name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
CategoryTheory.Adjunction.Triple.whiskerRight_rightToLeft
Mathlib.CategoryTheory.Adjunction.Triple
βˆ€ {C : Type u_1} {D : Type u_2} [inst : CategoryTheory.Category.{v_1, u_1} C] [inst_1 : CategoryTheory.Category.{v_2, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {H : CategoryTheory.Functor C D} (t : CategoryTheory.Adjunction.Triple F G H) [inst_2 : G.Full] [inst_3 : G.Faithful], CategoryTheory.Functor.whiskerRight t.rightToLeft G = CategoryTheory.CategoryStruct.comp t.adjβ‚‚.counit t.adj₁.unit
NormedAddCommGroup.ofAddDist'
Mathlib.Analysis.Normed.Group.Basic
{E : Type u_5} β†’ [inst : Norm E] β†’ [inst_1 : AddCommGroup E] β†’ [inst_2 : MetricSpace E] β†’ (βˆ€ (x : E), β€–xβ€– = dist x 0) β†’ (βˆ€ (x y z : E), dist (x + z) (y + z) ≀ dist x y) β†’ NormedAddCommGroup E
PiLp.continuousLinearEquiv._proof_1
Mathlib.Analysis.Normed.Lp.PiLp
βˆ€ (p : ENNReal) {ΞΉ : Type u_1} (Ξ² : ΞΉ β†’ Type u_2) [inst : (i : ΞΉ) β†’ SeminormedAddCommGroup (Ξ² i)], Continuous WithLp.ofLp
_private.Mathlib.RingTheory.Polynomial.Content.0.Polynomial.content_eq_gcd_range_of_lt._simp_1_1
Mathlib.RingTheory.Polynomial.Content
βˆ€ {R : Type u} {n : β„•} [inst : Semiring R] {p : Polynomial R}, (n ∈ p.support) = (p.coeff n β‰  0)
_private.Batteries.Tactic.PrintDependents.0.Batteries.Tactic.CollectDependents.collect.match_1
Batteries.Tactic.PrintDependents
(motive : Option Bool β†’ Sort u_1) β†’ (x : Option Bool) β†’ ((b : Bool) β†’ motive (some b)) β†’ ((x : Option Bool) β†’ motive x) β†’ motive x
CategoryTheory.Equivalence.instMonoidalInverseTrans
Mathlib.CategoryTheory.Monoidal.Functor
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ [inst_1 : CategoryTheory.MonoidalCategory C] β†’ {D : Type uβ‚‚} β†’ [inst_2 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] β†’ [inst_3 : CategoryTheory.MonoidalCategory D] β†’ {E : Type u₃} β†’ [inst_4 : CategoryTheory.Category.{v₃, u₃} E] β†’ [inst_5 : CategoryTheory.MonoidalCategory E] β†’ (e : C β‰Œ D) β†’ [e.inverse.Monoidal] β†’ (e' : D β‰Œ E) β†’ [e'.inverse.Monoidal] β†’ (e.trans e').inverse.Monoidal
MvPowerSeries.rescaleUnit
Mathlib.RingTheory.PowerSeries.Substitution
βˆ€ {R : Type u_2} [inst : CommRing R] (a : R) (f : PowerSeries R), (MvPowerSeries.rescale (Function.const Unit a)) f = (PowerSeries.rescale a) f
dist_le_of_le_geometric_two_of_tendstoβ‚€
Mathlib.Analysis.SpecificLimits.Basic
βˆ€ {Ξ± : Type u_1} [inst : PseudoMetricSpace Ξ±] {C : ℝ} {f : β„• β†’ Ξ±}, (βˆ€ (n : β„•), dist (f n) (f (n + 1)) ≀ C / 2 / 2 ^ n) β†’ βˆ€ {a : Ξ±}, Filter.Tendsto f Filter.atTop (nhds a) β†’ dist (f 0) a ≀ C
Ideal.quotientKerAlgEquivOfSurjective._proof_2
Mathlib.RingTheory.Ideal.Quotient.Operations
βˆ€ {R₁ : Type u_3} {A : Type u_1} {B : Type u_2} [inst : CommSemiring R₁] [inst_1 : Ring A] [inst_2 : Algebra R₁ A] [inst_3 : Semiring B] [inst_4 : Algebra R₁ B] {f : A →ₐ[R₁] B} (hf : Function.Surjective ⇑f), Function.RightInverse (Classical.choose β‹―) ⇑f
Real.Angle.sin_coe
Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
βˆ€ (x : ℝ), (↑x).sin = Real.sin x
CategoryTheory.tensorRightHomEquiv._proof_1
Mathlib.CategoryTheory.Monoidal.Rigid.Basic
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.MonoidalCategory C] (X Y Y' Z : C) [inst_2 : CategoryTheory.ExactPairing Y Y'] (f : CategoryTheory.MonoidalCategoryStruct.tensorObj X Y ⟢ Z), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.rightUnitor X).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft X (Ξ·_ Y Y')) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator X Y Y').inv (CategoryTheory.MonoidalCategoryStruct.whiskerRight f Y')))) Y) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator Z Y' Y).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft Z (Ξ΅_ Y Y')) (CategoryTheory.MonoidalCategoryStruct.rightUnitor Z).hom)) = f
Differentiable.fun_mul
Mathlib.Analysis.Calculus.FDeriv.Mul
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {𝔸 : Type u_5} [inst_3 : NormedRing 𝔸] [inst_4 : NormedAlgebra π•œ 𝔸] {a b : E β†’ 𝔸}, Differentiable π•œ a β†’ Differentiable π•œ b β†’ Differentiable π•œ fun y => a y * b y
TypeVec.dropFun_from_append1_drop_last
Mathlib.Data.TypeVec
βˆ€ {n : β„•} {Ξ± : TypeVec.{u_1} (n + 1)}, TypeVec.dropFun TypeVec.fromAppend1DropLast = TypeVec.id
Lean.Elab.Term.getMatchAlt
Lean.Elab.Match
Lean.Syntax β†’ Option Lean.Elab.Term.MatchAltView
SMulWithZero.casesOn
Mathlib.Algebra.GroupWithZero.Action.Defs
{Mβ‚€ : Type u_2} β†’ {A : Type u_7} β†’ [inst : Zero Mβ‚€] β†’ [inst_1 : Zero A] β†’ {motive : SMulWithZero Mβ‚€ A β†’ Sort u} β†’ (t : SMulWithZero Mβ‚€ A) β†’ ([toSMulZeroClass : SMulZeroClass Mβ‚€ A] β†’ (zero_smul : βˆ€ (m : A), 0 β€’ m = 0) β†’ motive { toSMulZeroClass := toSMulZeroClass, zero_smul := zero_smul }) β†’ motive t
_private.Mathlib.Topology.EMetricSpace.Paracompact.0.EMetric.instParacompactSpace._simp_5
Mathlib.Topology.EMetricSpace.Paracompact
βˆ€ {b a : Prop}, (βˆƒ (_ : a), b) = (a ∧ b)
Std.TreeSet.Raw.min?_eq_some_iff_mem_and_forall
Std.Data.TreeSet.Raw.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeSet.Raw Ξ± cmp} [Std.TransCmp cmp] [Std.LawfulEqCmp cmp], t.WF β†’ βˆ€ {km : Ξ±}, t.min? = some km ↔ km ∈ t ∧ βˆ€ k ∈ t, (cmp km k).isLE = true
Summable.abs
Mathlib.Topology.Algebra.InfiniteSum.Order
βˆ€ {ΞΉ : Type u_1} {Ξ± : Type u_3} [inst : AddCommGroup Ξ±] [inst_1 : LinearOrder Ξ±] [IsOrderedAddMonoid Ξ±] [inst_3 : UniformSpace Ξ±] [IsUniformAddGroup Ξ±] [CompleteSpace Ξ±] {f : ΞΉ β†’ Ξ±}, Summable f β†’ Summable fun x => |f x|
Lean.Meta.Grind.EvalTactic
Lean.Meta.Tactic.Grind.Types
Type
_private.Init.Data.Int.DivMod.Lemmas.0.Int.natAbs_emod.match_1_1
Init.Data.Int.DivMod.Lemmas
βˆ€ (motive : β„€ β†’ Prop) (a : β„€), (βˆ€ (a : β„•), motive (Int.ofNat a)) β†’ (βˆ€ (a : β„•), motive (Int.negSucc a)) β†’ motive a
CategoryTheory.PreGaloisCategory.GaloisCategory.getFiberFunctor
Mathlib.CategoryTheory.Galois.Basic
(C : Type u₁) β†’ [inst : CategoryTheory.Category.{uβ‚‚, u₁} C] β†’ [CategoryTheory.GaloisCategory C] β†’ CategoryTheory.Functor C FintypeCat
Set.prod_insert
Mathlib.Data.Set.Prod
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {s : Set Ξ±} {t : Set Ξ²} {b : Ξ²}, s Γ—Λ’ insert b t = (fun a => (a, b)) '' s βˆͺ s Γ—Λ’ t
Perfect
Mathlib.Topology.Perfect
{Ξ± : Type u_1} β†’ [TopologicalSpace Ξ±] β†’ Set Ξ± β†’ Prop
groupHomology.chainsMap_f_single
Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
βˆ€ {k G H : Type u} [inst : CommRing k] [inst_1 : Group G] [inst_2 : Group H] {A : Rep k G} {B : Rep k H} (f : G β†’* H) (Ο† : A ⟢ (Action.res (ModuleCat k) f).obj B) (n : β„•) (x : Fin n β†’ G) (a : ↑A.V), ((CategoryTheory.ConcreteCategory.hom ((groupHomology.chainsMap f Ο†).f n)) funβ‚€ | x => a) = funβ‚€ | ⇑f ∘ x => (CategoryTheory.ConcreteCategory.hom Ο†.hom) a
_private.Mathlib.MeasureTheory.Function.StronglyMeasurable.Basic.0.MeasureTheory.Β«_aux_Mathlib_MeasureTheory_Function_StronglyMeasurable_Basic___macroRules__private_Mathlib_MeasureTheory_Function_StronglyMeasurable_Basic_0_MeasureTheory_term_β†’β‚›__1Β»
Mathlib.MeasureTheory.Function.StronglyMeasurable.Basic
Lean.Macro
Finset.image_comm
Mathlib.Data.Finset.Image
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst : DecidableEq Ξ²] {s : Finset Ξ±} {Ξ²' : Type u_4} [inst_1 : DecidableEq Ξ²'] [inst_2 : DecidableEq Ξ³] {f : Ξ² β†’ Ξ³} {g : Ξ± β†’ Ξ²} {f' : Ξ± β†’ Ξ²'} {g' : Ξ²' β†’ Ξ³}, (βˆ€ (a : Ξ±), f (g a) = g' (f' a)) β†’ Finset.image f (Finset.image g s) = Finset.image g' (Finset.image f' s)
Std.Tactic.BVDecide.BVExpr.bitblast.blastAdd.go_le_size
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Add
βˆ€ {Ξ± : Type} [inst : Hashable Ξ±] [inst_1 : DecidableEq Ξ±] {w : β„•} (aig : Std.Sat.AIG Ξ±) (curr : β„•) (hcurr : curr ≀ w) (cin : aig.Ref) (s : aig.RefVec curr) (lhs rhs : aig.RefVec w), aig.decls.size ≀ (Std.Tactic.BVDecide.BVExpr.bitblast.blastAdd.go aig lhs rhs curr hcurr cin s).aig.decls.size
CategoryTheory.Limits.CategoricalPullback.fst
Mathlib.CategoryTheory.Limits.Shapes.Pullback.Categorical.Basic
{A : Type u₁} β†’ {B : Type uβ‚‚} β†’ {C : Type u₃} β†’ [inst : CategoryTheory.Category.{v₁, u₁} A] β†’ [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} B] β†’ [inst_2 : CategoryTheory.Category.{v₃, u₃} C] β†’ {F : CategoryTheory.Functor A B} β†’ {G : CategoryTheory.Functor C B} β†’ CategoryTheory.Limits.CategoricalPullback F G β†’ A
_private.Mathlib.Analysis.Distribution.TemperateGrowth.0.Function.HasTemperateGrowth.sub._proof_1_1
Mathlib.Analysis.Distribution.TemperateGrowth
βˆ€ {E : Type u_1} {F : Type u_2} [inst : NormedAddCommGroup F] {f g : E β†’ F}, f - g = f + -g
_private.Mathlib.Order.Filter.Bases.Basic.0.Filter.inf_neBot_iff_frequently_left._simp_1_3
Mathlib.Order.Filter.Bases.Basic
βˆ€ {a b : Prop}, (a ∧ b) = (b ∧ a)
Projectivization.Independent.mk
Mathlib.LinearAlgebra.Projectivization.Independence
βˆ€ {ΞΉ : Type u_1} {K : Type u_2} {V : Type u_3} [inst : DivisionRing K] [inst_1 : AddCommGroup V] [inst_2 : Module K V] (f : ΞΉ β†’ V) (hf : βˆ€ (i : ΞΉ), f i β‰  0), LinearIndependent K f β†’ Projectivization.Independent fun i => Projectivization.mk K (f i) β‹―
Ordinal.CNF_of_le_one
Mathlib.SetTheory.Ordinal.CantorNormalForm
βˆ€ {b o : Ordinal.{u_1}}, b ≀ 1 β†’ o β‰  0 β†’ Ordinal.CNF b o = [(0, o)]
FloorRing.gc_ceil_coe
Mathlib.Algebra.Order.Floor.Defs
βˆ€ {Ξ± : Type u_4} {inst : Ring Ξ±} {inst_1 : LinearOrder Ξ±} [self : FloorRing Ξ±], GaloisConnection FloorRing.ceil Int.cast
inner_self_eq_one_of_norm_eq_one
Mathlib.Analysis.InnerProductSpace.Basic
βˆ€ {π•œ : Type u_1} {E : Type u_2} [inst : RCLike π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] {x : E}, β€–xβ€– = 1 β†’ inner π•œ x x = 1
Lean.Grind.CommRing.Expr.sub.sizeOf_spec
Init.Grind.Ring.CommSolver
βˆ€ (a b : Lean.Grind.CommRing.Expr), sizeOf (a.sub b) = 1 + sizeOf a + sizeOf b
OreLocalization.instAddGroupOreLocalization._proof_2
Mathlib.RingTheory.OreLocalization.Basic
βˆ€ {R : Type u_1} [inst : Monoid R] {S : Submonoid R} [inst_1 : OreLocalization.OreSet S] {X : Type u_2} [inst_2 : AddGroup X] [inst_3 : DistribMulAction R X] (a : OreLocalization S X), OreLocalization.zsmul 0 a = OreLocalization.zsmul 0 a
Lean.Meta.Rewrites.RewriteResultConfig.mk._flat_ctor
Lean.Meta.Tactic.Rewrites
Bool β†’ β„• β†’ β„• β†’ Lean.MVarId β†’ Lean.Expr β†’ Lean.Meta.Rewrites.SideConditions β†’ Lean.MetavarContext β†’ Lean.Meta.Rewrites.RewriteResultConfig
_private.Mathlib.RingTheory.PowerSeries.Basic.0.PowerSeries.coeff_one_pow._simp_1_8
Mathlib.RingTheory.PowerSeries.Basic
βˆ€ {a b c : Prop}, ((a ∨ b) ∨ c) = (a ∨ b ∨ c)
Lean.JsonNumber.instNeg
Lean.Data.Json.Basic
Neg Lean.JsonNumber
Finsupp.span_image_eq_map_linearCombination
Mathlib.LinearAlgebra.Finsupp.LinearCombination
βˆ€ {Ξ± : Type u_1} {M : Type u_2} (R : Type u_5) [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {v : Ξ± β†’ M} (s : Set Ξ±), Submodule.span R (v '' s) = Submodule.map (Finsupp.linearCombination R v) (Finsupp.supported R R s)
_private.Lean.Server.ProtocolOverview.0.Lean.Server.Overview.MessageOverview.request
Lean.Server.ProtocolOverview
Lean.Server.Overview.RequestOverview✝ β†’ Lean.Server.Overview.MessageOverview✝
ByteArray.toUInt64BE!
Init.Data.ByteArray.Extra
ByteArray β†’ UInt64
Mathlib.Tactic.ITauto.Proof.orInR
Mathlib.Tactic.ITauto
Mathlib.Tactic.ITauto.Proof β†’ Mathlib.Tactic.ITauto.Proof
Set.finite_iff_bddAbove
Mathlib.Order.Interval.Finset.Defs
βˆ€ {Ξ± : Type u_3} {s : Set Ξ±} [inst : SemilatticeSup Ξ±] [LocallyFiniteOrder Ξ±] [OrderBot Ξ±], s.Finite ↔ BddAbove s
banach_steinhaus_iSup_nnnorm
Mathlib.Analysis.Normed.Operator.BanachSteinhaus
βˆ€ {E : Type u_1} {F : Type u_2} {π•œ : Type u_3} {π•œβ‚‚ : Type u_4} [inst : SeminormedAddCommGroup E] [inst_1 : SeminormedAddCommGroup F] [inst_2 : NontriviallyNormedField π•œ] [inst_3 : NontriviallyNormedField π•œβ‚‚] [inst_4 : NormedSpace π•œ E] [inst_5 : NormedSpace π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [inst_6 : RingHomIsometric σ₁₂] {ΞΉ : Type u_5} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}, (βˆ€ (x : E), ⨆ i, ↑‖(g i) xβ€–β‚Š < ⊀) β†’ ⨆ i, ↑‖g iβ€–β‚Š < ⊀
RootPairing.EmbeddedG2.threeShortAddLongRoot
Mathlib.LinearAlgebra.RootSystem.Finite.G2
{ΞΉ : Type u_1} β†’ {R : Type u_2} β†’ {M : Type u_3} β†’ {N : Type u_4} β†’ [inst : CommRing R] β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ [inst_3 : AddCommGroup N] β†’ [inst_4 : Module R N] β†’ (P : RootPairing ΞΉ R M N) β†’ [P.EmbeddedG2] β†’ M
CategoryTheory.Limits.PullbackCone.unopOpIso
Mathlib.CategoryTheory.Limits.Shapes.Opposites.Pullbacks
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ {X Y Z : Cα΅’α΅–} β†’ {f : X ⟢ Z} β†’ {g : Y ⟢ Z} β†’ (c : CategoryTheory.Limits.PullbackCone f g) β†’ c.unop.op β‰… c
BoundedContinuousFunction.toContinuousMapₐ._proof_4
Mathlib.Topology.ContinuousMap.Bounded.Normed
βˆ€ {Ξ± : Type u_1} {Ξ³ : Type u_2} [inst : TopologicalSpace Ξ±] [inst_1 : NormedRing Ξ³] (x x_1 : BoundedContinuousFunction Ξ± Ξ³), ↑(x * x_1) = ↑(x * x_1)
Lean.Meta.UnificationConstraint.mk.sizeOf_spec
Lean.Meta.UnificationHint
βˆ€ (lhs rhs : Lean.Expr), sizeOf { lhs := lhs, rhs := rhs } = 1 + sizeOf lhs + sizeOf rhs
instUniqueEmbOfIsPurelyInseparable._proof_1
Mathlib.FieldTheory.PurelyInseparable.Basic
βˆ€ (E : Type u_1) [inst : Field E], IsReduced (AlgebraicClosure E)
HomologicalComplex.cylinder.homotopy₀₁._proof_1
Mathlib.Algebra.Homology.HomotopyCofiber
βˆ€ {C : Type u_3} [inst : CategoryTheory.Category.{u_2, u_3} C] [inst_1 : CategoryTheory.Preadditive C] {ΞΉ : Type u_1} {c : ComplexShape ΞΉ} (K : HomologicalComplex C c) [inst_2 : DecidableRel c.Rel] [inst_3 : βˆ€ (i : ΞΉ), CategoryTheory.Limits.HasBinaryBiproduct (K.X i) (K.X i)] [inst_4 : HomologicalComplex.HasHomotopyCofiber (CategoryTheory.Limits.biprod.lift (CategoryTheory.CategoryStruct.id K) (-CategoryTheory.CategoryStruct.id K))], HomologicalComplex.cylinder.ΞΉβ‚€ K = CategoryTheory.CategoryStruct.comp (HomologicalComplex.cylinder.ι₁ K) (CategoryTheory.CategoryStruct.comp (HomologicalComplex.cylinder.Ο€ K) (HomologicalComplex.cylinder.ΞΉβ‚€ K))
Lean.Elab.ContextInfo.mk.sizeOf_spec
Lean.Elab.InfoTree.Types
βˆ€ (toCommandContextInfo : Lean.Elab.CommandContextInfo) (parentDecl? : Option Lean.Name) (autoImplicits : Array Lean.Expr), sizeOf { toCommandContextInfo := toCommandContextInfo, parentDecl? := parentDecl?, autoImplicits := autoImplicits } = 1 + sizeOf toCommandContextInfo + sizeOf parentDecl? + sizeOf autoImplicits
sup_inf_left
Mathlib.Order.Lattice
βˆ€ {Ξ± : Type u} [inst : DistribLattice Ξ±] (a b c : Ξ±), a βŠ” b βŠ“ c = (a βŠ” b) βŠ“ (a βŠ” c)
_private.Mathlib.Data.Subtype.0.Subtype.coe_eq_iff._proof_1_1
Mathlib.Data.Subtype
βˆ€ {Ξ± : Sort u_1} {p : Ξ± β†’ Prop} {a : { a // p a }} {b : Ξ±}, ↑a = b β†’ p b
OrderMonoidHom.casesOn
Mathlib.Algebra.Order.Hom.Monoid
{Ξ± : Type u_6} β†’ {Ξ² : Type u_7} β†’ [inst : Preorder Ξ±] β†’ [inst_1 : Preorder Ξ²] β†’ [inst_2 : MulOneClass Ξ±] β†’ [inst_3 : MulOneClass Ξ²] β†’ {motive : (Ξ± β†’*o Ξ²) β†’ Sort u} β†’ (t : Ξ± β†’*o Ξ²) β†’ ((toMonoidHom : Ξ± β†’* Ξ²) β†’ (monotone' : Monotone (↑toMonoidHom).toFun) β†’ motive { toMonoidHom := toMonoidHom, monotone' := monotone' }) β†’ motive t
CategoryTheory.RetractArrow.unop
Mathlib.CategoryTheory.Retract
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {X Y Z W : Cα΅’α΅–} β†’ {f : X ⟢ Y} β†’ {g : Z ⟢ W} β†’ CategoryTheory.RetractArrow f g β†’ CategoryTheory.RetractArrow f.unop g.unop
Lean.Expr.CollectLooseBVars.State.bvars._default
Lean.Util.CollectLooseBVars
Std.HashSet β„•
Array.insertIdx_comm._proof_5
Init.Data.Array.InsertIdx
βˆ€ {Ξ± : Type u_1} (b : Ξ±) {i j : β„•} {xs : Array Ξ±}, i ≀ j β†’ βˆ€ (x : j ≀ xs.size), i ≀ (xs.insertIdx j b x).size
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemTrivialCofibrationsFibrations
Mathlib.AlgebraicTopology.ModelCategory.Basic
βˆ€ (C : Type u) [inst : CategoryTheory.Category.{v, u} C] [inst_1 : HomotopicalAlgebra.ModelCategory C], (HomotopicalAlgebra.trivialCofibrations C).IsWeakFactorizationSystem (HomotopicalAlgebra.fibrations C)
Aesop.instInhabitedSubstitution
Aesop.Forward.Substitution
Inhabited Aesop.Substitution
_private.Mathlib.RingTheory.SimpleRing.Field.0.IsSimpleRing.isField_center._simp_1_4
Mathlib.RingTheory.SimpleRing.Field
βˆ€ {Ξ± : Type u} {ΞΉ : Sort u_1} {f : ΞΉ β†’ Ξ±} {x : Ξ±}, (x ∈ Set.range f) = βˆƒ y, f y = x
CategoryTheory.Endofunctor.Coalgebra.Hom.comp._proof_2
Mathlib.CategoryTheory.Endofunctor.Algebra
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {F : CategoryTheory.Functor C C} {Vβ‚€ V₁ Vβ‚‚ : CategoryTheory.Endofunctor.Coalgebra F} (f : Vβ‚€.Hom V₁) (g : V₁.Hom Vβ‚‚), CategoryTheory.CategoryStruct.comp Vβ‚€.str (F.map (CategoryTheory.CategoryStruct.comp f.f g.f)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp f.f g.f) Vβ‚‚.str
_private.Mathlib.RingTheory.Jacobson.Ideal.0.Ideal.IsLocal.mem_jacobson_or_exists_inv.match_1_1
Mathlib.RingTheory.Jacobson.Ideal
βˆ€ {R : Type u_1} [inst : CommRing R] (x q : R) (motive : x ∣ q β†’ Prop) (x_1 : x ∣ q), (βˆ€ (r : R) (hr : q = x * r), motive β‹―) β†’ motive x_1
HomotopicalAlgebra.PrepathObject.ΞΉ_p₁_assoc
Mathlib.AlgebraicTopology.ModelCategory.PathObject
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {A : C} (self : HomotopicalAlgebra.PrepathObject A) {Z : C} (h : A ⟢ Z), CategoryTheory.CategoryStruct.comp self.ΞΉ (CategoryTheory.CategoryStruct.comp self.p₁ h) = h
Algebra.Generators.cotangentCompLocalizationAwayEquiv_symm_comp_inl
Mathlib.RingTheory.Extension.Cotangent.LocalizationAway
βˆ€ {R : Type u_1} {S : Type u_2} {T : Type u_3} {ΞΉ : Type u_4} [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : Algebra R S] [inst_3 : CommRing T] [inst_4 : Algebra R T] [inst_5 : Algebra S T] [inst_6 : IsScalarTower R S T] (g : S) [inst_7 : IsLocalization.Away g T] (P : Algebra.Generators R S ΞΉ) {x : ((Algebra.Generators.localizationAway T g).comp P).toExtension.Cotangent} (hx : (Algebra.Extension.Cotangent.map ((Algebra.Generators.localizationAway T g).ofComp P).toExtensionHom) x = Algebra.Generators.cMulXSubOneCotangent T g), ↑(Algebra.Generators.cotangentCompLocalizationAwayEquiv g P hx).symm βˆ˜β‚— LinearMap.inl T (TensorProduct S T P.toExtension.Cotangent) (Algebra.Generators.localizationAway T g).toExtension.Cotangent = LinearMap.liftBaseChange T (Algebra.Extension.Cotangent.map ((Algebra.Generators.localizationAway T g).toComp P).toExtensionHom)
DirichletCharacter.unit_norm_eq_one
Mathlib.NumberTheory.DirichletCharacter.Bounds
βˆ€ {F : Type u_1} [inst : NormedField F] {n : β„•} (Ο‡ : DirichletCharacter F n) (a : (ZMod n)Λ£), β€–Ο‡ ↑aβ€– = 1
IsAlgClosed.roots_eq_zero_iff
Mathlib.FieldTheory.IsAlgClosed.Basic
βˆ€ {k : Type u} [inst : Field k] [IsAlgClosed k] {p : Polynomial k}, p.roots = 0 ↔ p = Polynomial.C (p.coeff 0)
_private.Mathlib.Data.Finset.Prod.0.Finset.product_image_snd._simp_1_1
Mathlib.Data.Finset.Prod
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : DecidableEq Ξ²] {f : Ξ± β†’ Ξ²} {s : Finset Ξ±} {b : Ξ²}, (b ∈ Finset.image f s) = βˆƒ a ∈ s, f a = b
Lean.Meta.Ext.ExtTheorems.erased
Lean.Meta.Tactic.Ext
Lean.Meta.Ext.ExtTheorems β†’ Lean.PHashSet Lean.Name
Ideal.radical_minimalPrimes
Mathlib.RingTheory.Ideal.MinimalPrime.Basic
βˆ€ {R : Type u_1} [inst : CommSemiring R] {I : Ideal R}, I.radical.minimalPrimes = I.minimalPrimes
AddSubgroup.quotientEquivProdOfLE
Mathlib.GroupTheory.Coset.Basic
{Ξ± : Type u_1} β†’ [inst : AddGroup Ξ±] β†’ {s t : AddSubgroup Ξ±} β†’ s ≀ t β†’ Ξ± β§Έ s ≃ (Ξ± β§Έ t) Γ— β†₯t β§Έ s.addSubgroupOf t
Set.Subsingleton.isDiscrete
Mathlib.Topology.DiscreteSubset
βˆ€ {X : Type u_1} [inst : TopologicalSpace X] {s : Set X}, s.Subsingleton β†’ IsDiscrete s
_private.Mathlib.Topology.Order.IntermediateValue.0.isTotallyDisconnected_iff_lt._simp_1_2
Mathlib.Topology.Order.IntermediateValue
βˆ€ {Ξ± : Type u} [inst : ConditionallyCompleteLinearOrder Ξ±] [inst_1 : TopologicalSpace Ξ±] [OrderTopology Ξ±] [DenselyOrdered Ξ±] {s : Set Ξ±}, IsPreconnected s = s.OrdConnected
_private.Mathlib.LinearAlgebra.Matrix.Determinant.TotallyUnimodular.0.Matrix.IsTotallyUnimodular.fromRows_unitlike._simp_1_1
Mathlib.LinearAlgebra.Matrix.Determinant.TotallyUnimodular
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {x : Ξ± βŠ• Ξ²}, (βˆƒ y, x = Sum.inr y) = (x.isRight = true)
Mathlib.Tactic.Widget.StringDiagram.Node.rec
Mathlib.Tactic.Widget.StringDiagram
{motive : Mathlib.Tactic.Widget.StringDiagram.Node β†’ Sort u} β†’ ((a : Mathlib.Tactic.Widget.StringDiagram.AtomNode) β†’ motive (Mathlib.Tactic.Widget.StringDiagram.Node.atom a)) β†’ ((a : Mathlib.Tactic.Widget.StringDiagram.IdNode) β†’ motive (Mathlib.Tactic.Widget.StringDiagram.Node.id a)) β†’ (t : Mathlib.Tactic.Widget.StringDiagram.Node) β†’ motive t
Lean.Compiler.LCNF.Code.unreach.injEq
Lean.Compiler.LCNF.Basic
βˆ€ (type type_1 : Lean.Expr), (Lean.Compiler.LCNF.Code.unreach type = Lean.Compiler.LCNF.Code.unreach type_1) = (type = type_1)
RelIso.sumLexCongr._proof_1
Mathlib.Order.RelIso.Basic
βˆ€ {α₁ : Type u_3} {Ξ±β‚‚ : Type u_4} {β₁ : Type u_1} {Ξ²β‚‚ : Type u_2} {r₁ : α₁ β†’ α₁ β†’ Prop} {rβ‚‚ : Ξ±β‚‚ β†’ Ξ±β‚‚ β†’ Prop} {s₁ : β₁ β†’ β₁ β†’ Prop} {sβ‚‚ : Ξ²β‚‚ β†’ Ξ²β‚‚ β†’ Prop} (e₁ : r₁ ≃r s₁) (eβ‚‚ : rβ‚‚ ≃r sβ‚‚) (a b : α₁ βŠ• Ξ±β‚‚), Sum.Lex s₁ sβ‚‚ ((e₁.sumCongr eβ‚‚.toEquiv) a) ((e₁.sumCongr eβ‚‚.toEquiv) b) ↔ Sum.Lex r₁ rβ‚‚ a b
MulAction.mem_fixedPoints'
Mathlib.GroupTheory.GroupAction.Defs
βˆ€ {M : Type u_1} {Ξ± : Type u_3} [inst : Monoid M] [inst_1 : MulAction M Ξ±] {a : Ξ±}, a ∈ MulAction.fixedPoints M Ξ± ↔ βˆ€ a' ∈ MulAction.orbit M a, a' = a
_private.Mathlib.Topology.Algebra.InfiniteSum.Basic.0.hasProd_prod._simp_1_5
Mathlib.Topology.Algebra.InfiniteSum.Basic
(Β¬False) = True
Algebra.Extension.cotangentEquiv._proof_4
Mathlib.RingTheory.Extension.Basic
βˆ€ {S : Type u_1} [inst : CommRing S], RingHomInvPair (RingHom.id S) (RingHom.id S)
SimpleGraph.Subgraph.IsInduced
Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} β†’ {G : SimpleGraph V} β†’ G.Subgraph β†’ Prop
Std.DTreeMap.Internal.Zipper.toList
Std.Data.DTreeMap.Internal.Zipper
{Ξ± : Type u} β†’ {Ξ² : Ξ± β†’ Type v} β†’ Std.DTreeMap.Internal.Zipper Ξ± Ξ² β†’ List ((a : Ξ±) Γ— Ξ² a)
MeromorphicOn.divisor_fun_mul
Mathlib.Analysis.Meromorphic.Divisor
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {U : Set π•œ} {f₁ fβ‚‚ : π•œ β†’ π•œ}, MeromorphicOn f₁ U β†’ MeromorphicOn fβ‚‚ U β†’ (βˆ€ z ∈ U, meromorphicOrderAt f₁ z β‰  ⊀) β†’ (βˆ€ z ∈ U, meromorphicOrderAt fβ‚‚ z β‰  ⊀) β†’ MeromorphicOn.divisor (fun z => f₁ z * fβ‚‚ z) U = MeromorphicOn.divisor f₁ U + MeromorphicOn.divisor fβ‚‚ U
Rat.num_natCast
Init.Data.Rat.Lemmas
βˆ€ (n : β„•), (↑n).num = ↑n
_private.Mathlib.Data.Multiset.DershowitzManna.0.Multiset.isDershowitzMannaLT_of_transGen_oneStep
Mathlib.Data.Multiset.DershowitzManna
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] {M N : Multiset Ξ±}, Relation.TransGen Multiset.OneStep✝ M N β†’ M.IsDershowitzMannaLT N
MeasureTheory.SimpleFunc.piecewise_univ
Mathlib.MeasureTheory.Function.SimpleFunc
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : MeasurableSpace Ξ±] (f g : MeasureTheory.SimpleFunc Ξ± Ξ²), MeasureTheory.SimpleFunc.piecewise Set.univ β‹― f g = f
Std.DHashMap.Raw.get!_alter
Std.Data.DHashMap.RawLemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {m : Std.DHashMap.Raw Ξ± Ξ²} [inst_2 : LawfulBEq Ξ±] {k k' : Ξ±} [hi : Inhabited (Ξ² k')] {f : Option (Ξ² k) β†’ Option (Ξ² k)}, m.WF β†’ (m.alter k f).get! k' = if heq : (k == k') = true then (Option.map (cast β‹―) (f (m.get? k))).get! else m.get! k'
_private.Std.Data.DTreeMap.Internal.Operations.0.Std.DTreeMap.Internal.Impl.alter._proof_5
Std.Data.DTreeMap.Internal.Operations
Β¬0 ≀ 0 + 1 β†’ False
AffineIsometryEquiv.coe_mk'
Mathlib.Analysis.Normed.Affine.Isometry
βˆ€ {π•œ : Type u_1} {V₁ : Type u_3} {Vβ‚‚ : Type u_5} {P₁ : Type u_8} {Pβ‚‚ : Type u_11} [inst : NormedField π•œ] [inst_1 : SeminormedAddCommGroup V₁] [inst_2 : NormedSpace π•œ V₁] [inst_3 : PseudoMetricSpace P₁] [inst_4 : NormedAddTorsor V₁ P₁] [inst_5 : SeminormedAddCommGroup Vβ‚‚] [inst_6 : NormedSpace π•œ Vβ‚‚] [inst_7 : PseudoMetricSpace Pβ‚‚] [inst_8 : NormedAddTorsor Vβ‚‚ Pβ‚‚] (e : P₁ β†’ Pβ‚‚) (e' : V₁ ≃ₗᡒ[π•œ] Vβ‚‚) (p : P₁) (h : βˆ€ (p' : P₁), e p' = e' (p' -α΅₯ p) +α΅₯ e p), ⇑(AffineIsometryEquiv.mk' e e' p h) = e
CategoryTheory.Limits.WalkingReflexivePair.rec
Mathlib.CategoryTheory.Limits.Shapes.Reflexive
{motive : CategoryTheory.Limits.WalkingReflexivePair β†’ Sort u} β†’ motive CategoryTheory.Limits.WalkingReflexivePair.zero β†’ motive CategoryTheory.Limits.WalkingReflexivePair.one β†’ (t : CategoryTheory.Limits.WalkingReflexivePair) β†’ motive t
Std.HashSet.Raw.noConfusion
Std.Data.HashSet.Raw
{P : Sort u_1} β†’ {Ξ± : Type u} β†’ {t : Std.HashSet.Raw Ξ±} β†’ {Ξ±' : Type u} β†’ {t' : Std.HashSet.Raw Ξ±'} β†’ Ξ± = Ξ±' β†’ t ≍ t' β†’ Std.HashSet.Raw.noConfusionType P t t'
Nat.sq_mul_squarefree_of_pos'
Mathlib.Data.Nat.Squarefree
βˆ€ {n : β„•}, 0 < n β†’ βˆƒ a b, (b + 1) ^ 2 * (a + 1) = n ∧ Squarefree (a + 1)
Bialgebra.TensorProduct.assoc._proof_4
Mathlib.RingTheory.Bialgebra.TensorProduct
βˆ€ (R : Type u_1) (S : Type u_5) (A : Type u_3) (C : Type u_2) (D : Type u_4) [inst : CommSemiring R] [inst_1 : CommSemiring S] [inst_2 : Semiring A] [inst_3 : Bialgebra S A] [inst_4 : Algebra R A] [inst_5 : Algebra R S] [inst_6 : IsScalarTower R S A] [inst_7 : Semiring C] [inst_8 : Semiring D] [inst_9 : Bialgebra S C] [inst_10 : Bialgebra R D] [inst_11 : Algebra R C] [inst_12 : IsScalarTower R S C] (x y : TensorProduct R (TensorProduct S A C) D), (Algebra.TensorProduct.assoc R S A C D).toFun (x * y) = (Algebra.TensorProduct.assoc R S A C D).toFun x * (Algebra.TensorProduct.assoc R S A C D).toFun y
BoxIntegral.TaggedPrepartition.distortion_le_of_mem
Mathlib.Analysis.BoxIntegral.Partition.Tagged
βˆ€ {ΞΉ : Type u_1} {I J : BoxIntegral.Box ΞΉ} (Ο€ : BoxIntegral.TaggedPrepartition I) [inst : Fintype ΞΉ], J ∈ Ο€ β†’ J.distortion ≀ Ο€.distortion
instZeroLieSubalgebra
Mathlib.Algebra.Lie.Subalgebra
(R : Type u) β†’ (L : Type v) β†’ [inst : CommRing R] β†’ [inst_1 : LieRing L] β†’ [inst_2 : LieAlgebra R L] β†’ Zero (LieSubalgebra R L)
CategoryTheory.Limits.WalkingReflexivePair.Hom.rightCompReflexion.elim
Mathlib.CategoryTheory.Limits.Shapes.Reflexive
{motive : (a a_1 : CategoryTheory.Limits.WalkingReflexivePair) β†’ a.Hom a_1 β†’ Sort u} β†’ {a a_1 : CategoryTheory.Limits.WalkingReflexivePair} β†’ (t : a.Hom a_1) β†’ t.ctorIdx = 4 β†’ motive CategoryTheory.Limits.WalkingReflexivePair.one CategoryTheory.Limits.WalkingReflexivePair.one CategoryTheory.Limits.WalkingReflexivePair.Hom.rightCompReflexion β†’ motive a a_1 t
CategoryTheory.Functor.LeftExtension.postcomposeβ‚‚_obj_hom_app
Mathlib.CategoryTheory.Functor.KanExtension.Basic
βˆ€ {C : Type u_1} {H : Type u_3} {D : Type u_4} {D' : Type u_5} [inst : CategoryTheory.Category.{v_1, u_1} C] [inst_1 : CategoryTheory.Category.{v_3, u_3} H] [inst_2 : CategoryTheory.Category.{v_4, u_4} D] [inst_3 : CategoryTheory.Category.{v_5, u_5} D'] (L : CategoryTheory.Functor C D) (F : CategoryTheory.Functor C H) (G : CategoryTheory.Functor H D') (X : CategoryTheory.Comma (CategoryTheory.Functor.fromPUnit F) ((CategoryTheory.Functor.whiskeringLeft C D H).obj L)) (X_1 : C), ((CategoryTheory.Functor.LeftExtension.postcomposeβ‚‚ L F G).obj X).hom.app X_1 = G.map (X.hom.app X_1)
Fin.reduceCastLT._regBuiltin.Fin.reduceCastLT.declare_1._@.Lean.Meta.Tactic.Simp.BuiltinSimprocs.Fin.3768712919._hygCtx._hyg.16
Lean.Meta.Tactic.Simp.BuiltinSimprocs.Fin
IO Unit
_private.Lean.Elab.Print.0.Lean.Elab.Command.levelParamsToMessageData
Lean.Elab.Print
List Lean.Name β†’ Lean.MessageData
Mathlib.Tactic.Bicategory.structuralIsoOfExpr_whiskerRight
Mathlib.Tactic.CategoryTheory.Bicategory.Datatypes
βˆ€ {B : Type u} [inst : CategoryTheory.Bicategory B] {a b c : B} {f g : a ⟢ b} (h : b ⟢ c) (Ξ· : f ⟢ g) (Ξ·' : f β‰… g), Ξ·'.hom = Ξ· β†’ (CategoryTheory.Bicategory.whiskerRightIso Ξ·' h).hom = CategoryTheory.Bicategory.whiskerRight Ξ· h