name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
Set.encard_le_encard_diff_add_encard
|
Mathlib.Data.Set.Card
|
β {Ξ± : Type u_1} (s t : Set Ξ±), s.encard β€ (s \ t).encard + t.encard
|
UInt8.ofBitVec_ofFin
|
Init.Data.UInt.Lemmas
|
β (n : Fin (2 ^ 8)), { toBitVec := { toFin := n } } = UInt8.ofFin n
|
LaurentPolynomial.smeval_T_pow
|
Mathlib.Algebra.Polynomial.Laurent
|
β {R : Type u_1} {S : Type u_2} [inst : Semiring R] [inst_1 : AddCommMonoid S] [inst_2 : MulActionWithZero R S]
[inst_3 : Monoid S] (n : β€) (x : SΛ£), (LaurentPolynomial.T n).smeval x = β(x ^ n)
|
Lean.Parser.Term.binop_lazy.parenthesizer
|
Lean.Parser.Term
|
Lean.PrettyPrinter.Parenthesizer
|
ProfiniteGrp.toLimit._proof_1
|
Mathlib.Topology.Algebra.Category.ProfiniteGrp.Limits
|
β (P : ProfiniteGrp.{u_1}), CompactSpace βP.1.toTop
|
CategoryTheory.Limits.IsImage.ofIsoI._proof_2
|
Mathlib.CategoryTheory.Limits.Shapes.Images
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {X Y : C} {f : X βΆ Y}
{F : CategoryTheory.Limits.MonoFactorisation f} (hF : CategoryTheory.Limits.IsImage F) {I' : C} (e : F.I β
I')
(F'_1 : CategoryTheory.Limits.MonoFactorisation f),
CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp e.inv (hF.lift F'_1)) F'_1.m =
CategoryTheory.CategoryStruct.comp e.inv F.m
|
Finset.sumLexLift_inl_inl
|
Mathlib.Data.Sum.Interval
|
β {Ξ±β : Type u_1} {Ξ±β : Type u_2} {Ξ²β : Type u_3} {Ξ²β : Type u_4} {Ξ³β : Type u_5} {Ξ³β : Type u_6}
(fβ : Ξ±β β Ξ²β β Finset Ξ³β) (fβ : Ξ±β β Ξ²β β Finset Ξ³β) (gβ : Ξ±β β Ξ²β β Finset Ξ³β) (gβ : Ξ±β β Ξ²β β Finset Ξ³β) (a : Ξ±β)
(b : Ξ²β), Finset.sumLexLift fβ fβ gβ gβ (Sum.inl a) (Sum.inl b) = Finset.map Function.Embedding.inl (fβ a b)
|
Lean.MetavarContext.addExprMVarDecl
|
Lean.MetavarContext
|
Lean.MetavarContext β
Lean.MVarId β
Lean.Name β
Lean.LocalContext β
Lean.LocalInstances β
Lean.Expr β optParam Lean.MetavarKind Lean.MetavarKind.natural β optParam β 0 β Lean.MetavarContext
|
dualTensorHomEquivOfBasis._proof_3
|
Mathlib.LinearAlgebra.Contraction
|
β {ΞΉ : Type u_4} {R : Type u_1} {M : Type u_2} {N : Type u_3} [inst : CommSemiring R] [inst_1 : AddCommMonoid M]
[inst_2 : AddCommMonoid N] [inst_3 : Module R M] [inst_4 : Module R N] [inst_5 : DecidableEq ΞΉ] [inst_6 : Fintype ΞΉ]
(b : Module.Basis ΞΉ R M),
(β i, (TensorProduct.mk R (Module.Dual R M) N) (b.dualBasis i) ββ LinearMap.applyβ (b i)) ββ dualTensorHom R M N =
LinearMap.id
|
Nat.sub_max_sub_left
|
Init.Data.Nat.Lemmas
|
β (a b c : β), max (a - b) (a - c) = a - min b c
|
UInt64.toUInt8_eq
|
Init.Data.UInt.Lemmas
|
β (a b : UInt64), a.toUInt8 = b.toUInt8 β a % 256 = b % 256
|
Std.DTreeMap.Internal.Impl.Const.compare_maxKey!_modify_eq
|
Std.Data.DTreeMap.Internal.Lemmas
|
β {Ξ± : Type u} {instOrd : Ord Ξ±} {Ξ² : Type v} {t : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²} [Std.TransOrd Ξ±]
[inst : Inhabited Ξ±],
t.WF β β {k : Ξ±} {f : Ξ² β Ξ²}, compare (Std.DTreeMap.Internal.Impl.Const.modify k f t).maxKey! t.maxKey! = Ordering.eq
|
Mathlib.AssertNotExist.AssertExists.noConfusion
|
Mathlib.Util.AssertExistsExt
|
{P : Sort u} β
{t t' : Mathlib.AssertNotExist.AssertExists} β t = t' β Mathlib.AssertNotExist.AssertExists.noConfusionType P t t'
|
Cardinal.lift_inj._simp_1
|
Mathlib.SetTheory.Cardinal.Order
|
β {a b : Cardinal.{u}}, (Cardinal.lift.{v, u} a = Cardinal.lift.{v, u} b) = (a = b)
|
Subtype.exists
|
Init.Data.Subtype.Basic
|
β {Ξ± : Sort u} {p : Ξ± β Prop} {q : { a // p a } β Prop}, (β x, q x) β β a, β (b : p a), q β¨a, bβ©
|
BoxIntegral.unitPartition.prepartition._proof_1
|
Mathlib.Analysis.BoxIntegral.UnitPartition
|
β {ΞΉ : Type u_1} (n : β) [inst : NeZero n] [inst_1 : Fintype ΞΉ] (B x : BoxIntegral.Box ΞΉ),
x β Finset.image (fun Ξ½ => BoxIntegral.unitPartition.box n Ξ½) (BoxIntegral.unitPartition.admissibleIndex n B) β x β€ B
|
supClosure._proof_1
|
Mathlib.Order.SupClosed
|
β {Ξ± : Type u_1} [inst : SemilatticeSup Ξ±] (s : Set Ξ±), β a β s, β{a} β s β§ {a}.sup' β― id = a
|
DistribLattice.noConfusionType
|
Mathlib.Order.Lattice
|
Sort u β {Ξ± : Type u_1} β DistribLattice Ξ± β {Ξ±' : Type u_1} β DistribLattice Ξ±' β Sort u
|
Real.tendsto_integral_gaussian_smul'
|
Mathlib.Analysis.Fourier.Inversion
|
β {V : Type u_1} {E : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace β V]
[inst_2 : MeasurableSpace V] [inst_3 : BorelSpace V] [inst_4 : FiniteDimensional β V] [inst_5 : NormedAddCommGroup E]
[inst_6 : NormedSpace β E] {f : V β E} [CompleteSpace E],
MeasureTheory.Integrable f MeasureTheory.volume β
β {v : V},
ContinuousAt f v β
Filter.Tendsto
(fun c =>
β« (w : V),
((βReal.pi * βc) ^ (β(Module.finrank β V) / 2) * Complex.exp (-βReal.pi ^ 2 * βc * ββv - wβ ^ 2)) β’ f w)
Filter.atTop (nhds (f v))
|
AffineBasis.instAddAction
|
Mathlib.LinearAlgebra.AffineSpace.Basis
|
{ΞΉ : Type u_1} β
{k : Type u_5} β
{V : Type u_6} β
{P : Type u_7} β
[inst : AddCommGroup V] β
[inst_1 : AddTorsor V P] β [inst_2 : Ring k] β [inst_3 : Module k V] β AddAction V (AffineBasis ΞΉ k P)
|
Ideal.finsuppTotal
|
Mathlib.RingTheory.Ideal.Operations
|
(ΞΉ : Type u_1) β
(M : Type u_2) β
[inst : AddCommGroup M] β
{R : Type u_3} β [inst_1 : CommRing R] β [inst_2 : Module R M] β (I : Ideal R) β (ΞΉ β M) β (ΞΉ ββ β₯I) ββ[R] M
|
Lean.PersistentEnvExtensionDescrCore.ctorIdx
|
Lean.Environment
|
{Ξ± Ξ² Ο : Type} β Lean.PersistentEnvExtensionDescrCore Ξ± Ξ² Ο β β
|
Int64.toBitVec_ofIntTruncate
|
Init.Data.SInt.Lemmas
|
β {n : β€}, Int64.minValue.toInt β€ n β n β€ Int64.maxValue.toInt β (Int64.ofIntTruncate n).toBitVec = BitVec.ofInt 64 n
|
Std.Internal.List.getEntry?_filter
|
Std.Data.Internal.List.Associative
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} [inst : BEq Ξ±] [EquivBEq Ξ±] {f : (a : Ξ±) Γ Ξ² a β Bool} {l : List ((a : Ξ±) Γ Ξ² a)}
{k : Ξ±},
Std.Internal.List.DistinctKeys l β
Std.Internal.List.getEntry? k (List.filter f l) = Option.filter f (Std.Internal.List.getEntry? k l)
|
PerfectRing.comp_lift_apply
|
Mathlib.FieldTheory.IsPerfectClosure
|
β {K : Type u_1} {L : Type u_2} {M : Type u_3} [inst : CommRing K] [inst_1 : CommRing L] [inst_2 : CommRing M]
(i : K β+* L) (f : L β+* M) (p : β) [inst_3 : ExpChar M p] [inst_4 : ExpChar K p] [inst_5 : PerfectRing M p]
[inst_6 : IsPRadical i p] [inst_7 : ExpChar L p] (x : L), (PerfectRing.lift i (f.comp i) p) x = f x
|
WeierstrassCurve.Projective.dblXYZ_Y
|
Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Formula
|
β {R : Type r} [inst : CommRing R] {W' : WeierstrassCurve.Projective R} (P : Fin 3 β R), W'.dblXYZ P 1 = W'.dblY P
|
Set.Nonempty.star
|
Mathlib.Algebra.Star.Pointwise
|
β {Ξ± : Type u_1} [inst : InvolutiveStar Ξ±] {s : Set Ξ±}, s.Nonempty β (star s).Nonempty
|
Lean.DefinitionVal.mk.sizeOf_spec
|
Lean.Declaration
|
β (toConstantVal : Lean.ConstantVal) (value : Lean.Expr) (hints : Lean.ReducibilityHints)
(safety : Lean.DefinitionSafety) (all : List Lean.Name),
sizeOf { toConstantVal := toConstantVal, value := value, hints := hints, safety := safety, all := all } =
1 + sizeOf toConstantVal + sizeOf value + sizeOf hints + sizeOf safety + sizeOf all
|
Lean.Grind.CommRing.SPolResult.casesOn
|
Lean.Meta.Tactic.Grind.Arith.CommRing.Poly
|
{motive : Lean.Grind.CommRing.SPolResult β Sort u} β
(t : Lean.Grind.CommRing.SPolResult) β
((spol : Lean.Grind.CommRing.Poly) β
(kβ : β€) β
(mβ : Lean.Grind.CommRing.Mon) β
(kβ : β€) β
(mβ : Lean.Grind.CommRing.Mon) β motive { spol := spol, kβ := kβ, mβ := mβ, kβ := kβ, mβ := mβ }) β
motive t
|
_private.Std.Data.DTreeMap.Internal.Model.0.Std.DTreeMap.Internal.Impl.Const.minEntry?.match_1.splitter
|
Std.Data.DTreeMap.Internal.Model
|
{Ξ± : Type u_1} β
{Ξ² : Type u_2} β
(motive : (Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) β Sort u_3) β
(x : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) β
(Unit β motive Std.DTreeMap.Internal.Impl.leaf) β
((size : β) β
(k : Ξ±) β
(v : Ξ²) β
(r : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) β
motive (Std.DTreeMap.Internal.Impl.inner size k v Std.DTreeMap.Internal.Impl.leaf r)) β
((size : β) β
(k : Ξ±) β
(v : Ξ²) β
(size_1 : β) β
(k_1 : Ξ±) β
(v_1 : Ξ²) β
(l r r_1 : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) β
motive
(Std.DTreeMap.Internal.Impl.inner size k v
(Std.DTreeMap.Internal.Impl.inner size_1 k_1 v_1 l r) r_1)) β
motive x
|
Set.Nontrivial.eq_1
|
Mathlib.Data.Set.Subsingleton
|
β {Ξ± : Type u} (s : Set Ξ±), s.Nontrivial = β x β s, β y β s, x β y
|
_private.Mathlib.CategoryTheory.Preadditive.OfBiproducts.0.CategoryTheory.SemiadditiveOfBinaryBiproducts.Β«term_+α΅£_Β»
|
Mathlib.CategoryTheory.Preadditive.OfBiproducts
|
Lean.TrailingParserDescr
|
Matroid.map_isLoop_iff
|
Mathlib.Combinatorics.Matroid.Loop
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {M : Matroid Ξ±} {e : Ξ±} {f : Ξ± β Ξ²} {hf : Set.InjOn f M.E},
autoParam (e β M.E) Matroid.map_isLoop_iff._auto_1 β ((M.map f hf).IsLoop (f e) β M.IsLoop e)
|
PiLp.nnnorm_ofLp
|
Mathlib.Analysis.Normed.Lp.PiLp
|
β {ΞΉ : Type u_2} {Ξ² : ΞΉ β Type u_4} [inst : Fintype ΞΉ] [inst_1 : (i : ΞΉ) β SeminormedAddCommGroup (Ξ² i)] (f : PiLp β€ Ξ²),
βf.ofLpββ = βfββ
|
Valued.toNormedField.norm_le_iff
|
Mathlib.Topology.Algebra.Valued.NormedValued
|
β {L : Type u_1} [inst : Field L] {Ξβ : Type u_2} [inst_1 : LinearOrderedCommGroupWithZero Ξβ] [val : Valued L Ξβ]
[hv : Valued.v.RankOne] {x x' : L}, βxβ β€ βx'β β Valued.v x β€ Valued.v x'
|
Matrix.Β«_aux_Mathlib_Data_Matrix_Mul___macroRules_Matrix_term_α΅₯*__1Β»
|
Mathlib.Data.Matrix.Mul
|
Lean.Macro
|
Topology._aux_Mathlib_Topology_Defs_Basic___macroRules_Topology_Continuous_of_1
|
Mathlib.Topology.Defs.Basic
|
Lean.Macro
|
FirstOrder.Ring.compatibleRingOfRingStructure._proof_6
|
Mathlib.ModelTheory.Algebra.Ring.Basic
|
β (R : Type u_1) [inst : FirstOrder.Language.ring.Structure R] (x : Fin 0 β R),
FirstOrder.Language.Structure.funMap FirstOrder.Ring.zeroFunc x = 0
|
CategoryTheory.Functor.natTransEquiv_symm_apply_app
|
Mathlib.CategoryTheory.Functor.FunctorHom
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {D : Type u'} [inst_1 : CategoryTheory.Category.{v', u'} D]
{F G : CategoryTheory.Functor C D} (f : F βΆ G) (x : C)
(x_1 : (CategoryTheory.MonoidalCategoryStruct.tensorUnit (CategoryTheory.Functor C (Type (max v' v u)))).obj x),
(CategoryTheory.Functor.natTransEquiv.symm f).app x x_1 = CategoryTheory.Functor.HomObj.ofNatTrans f
|
Std.DTreeMap.Raw.Const.getEntryGED
|
Std.Data.DTreeMap.Raw.Basic
|
{Ξ± : Type u} β {cmp : Ξ± β Ξ± β Ordering} β {Ξ² : Type v} β Std.DTreeMap.Raw Ξ± (fun x => Ξ²) cmp β Ξ± β Ξ± Γ Ξ² β Ξ± Γ Ξ²
|
CategoryTheory.Limits.preservesBinaryBiproducts_of_preservesBinaryProducts
|
Mathlib.CategoryTheory.Preadditive.Biproducts
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C] {D : Type u'}
[inst_2 : CategoryTheory.Category.{v', u'} D] [inst_3 : CategoryTheory.Preadditive D] (F : CategoryTheory.Functor C D)
[inst_4 : F.PreservesZeroMorphisms]
[CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair) F],
CategoryTheory.Limits.PreservesBinaryBiproducts F
|
Lean.Lsp.DiagnosticSeverity.warning
|
Lean.Data.Lsp.Diagnostics
|
Lean.Lsp.DiagnosticSeverity
|
AlgCat.instIsRightAdjointForget
|
Mathlib.Algebra.Category.AlgCat.Basic
|
β (R : Type u) [inst : CommRing R], (CategoryTheory.forget (AlgCat R)).IsRightAdjoint
|
RootPairing.pairing_reflection_perm
|
Mathlib.LinearAlgebra.RootSystem.Defs
|
β {ΞΉ : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [inst : CommRing R] [inst_1 : AddCommGroup M]
[inst_2 : Module R M] [inst_3 : AddCommGroup N] [inst_4 : Module R N] (P : RootPairing ΞΉ R M N) (i j k : ΞΉ),
P.pairing j ((P.reflectionPerm i) k) = P.pairing ((P.reflectionPerm i) j) k
|
ContinuousAlternatingMap.add_apply
|
Mathlib.Topology.Algebra.Module.Alternating.Basic
|
β {R : Type u_1} {M : Type u_2} {N : Type u_4} {ΞΉ : Type u_6} [inst : Semiring R] [inst_1 : AddCommMonoid M]
[inst_2 : Module R M] [inst_3 : TopologicalSpace M] [inst_4 : AddCommMonoid N] [inst_5 : Module R N]
[inst_6 : TopologicalSpace N] (f g : M [β^ΞΉ]βL[R] N) [inst_7 : ContinuousAdd N] (v : ΞΉ β M), (f + g) v = f v + g v
|
Metric.PiNatEmbed.toPiNat.sizeOf_spec
|
Mathlib.Topology.MetricSpace.PiNat
|
β {ΞΉ : Type u_2} {X : Type u_5} {Y : ΞΉ β Type u_6} {f : (i : ΞΉ) β X β Y i} [inst : SizeOf ΞΉ] [inst_1 : SizeOf X]
[inst_2 : (a : ΞΉ) β SizeOf (Y a)] (ofPiNat : X), sizeOf { ofPiNat := ofPiNat } = 1 + sizeOf ofPiNat
|
Lean.QuotKind
|
Lean.Declaration
|
Type
|
CategoryTheory.PreGaloisCategory.PointedGaloisObject.noConfusionType
|
Mathlib.CategoryTheory.Galois.Prorepresentability
|
Sort u β
{C : Type uβ} β
[inst : CategoryTheory.Category.{uβ, uβ} C] β
[inst_1 : CategoryTheory.GaloisCategory C] β
{F : CategoryTheory.Functor C FintypeCat} β
CategoryTheory.PreGaloisCategory.PointedGaloisObject F β
{C' : Type uβ} β
[inst' : CategoryTheory.Category.{uβ, uβ} C'] β
[inst'_1 : CategoryTheory.GaloisCategory C'] β
{F' : CategoryTheory.Functor C' FintypeCat} β
CategoryTheory.PreGaloisCategory.PointedGaloisObject F' β Sort u
|
_private.Mathlib.RingTheory.Support.0.Module.support_subset_of_injective._simp_1_1
|
Mathlib.RingTheory.Support
|
β {R : Type u_1} {M : Type u_2} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M]
{p : PrimeSpectrum R}, (p β Module.support R M) = β m, β r β p.asIdeal, r β’ m β 0
|
SubtractionCommMonoid.casesOn
|
Mathlib.Algebra.Group.Defs
|
{G : Type u} β
{motive : SubtractionCommMonoid G β Sort u_1} β
(t : SubtractionCommMonoid G) β
([toSubtractionMonoid : SubtractionMonoid G] β
(add_comm : β (a b : G), a + b = b + a) β
motive { toSubtractionMonoid := toSubtractionMonoid, add_comm := add_comm }) β
motive t
|
SSet.N.cast._proof_1
|
Mathlib.AlgebraicTopology.SimplicialSet.NonDegenerateSimplices
|
β {X : SSet} (s : X.N) {d : β} (hd : s.dim = d), (s.cast hd).simplex β X.nonDegenerate (s.cast hd).dim
|
ProofWidgets.instToJsonMakeEditLinkProps
|
ProofWidgets.Component.MakeEditLink
|
Lean.ToJson ProofWidgets.MakeEditLinkProps
|
Aesop.instInhabitedNormSimpContext
|
Aesop.Search.SearchM
|
Inhabited Aesop.NormSimpContext
|
Filter.Germ.abs_def
|
Mathlib.Order.Filter.FilterProduct
|
β {Ξ± : Type u} {Ξ² : Type v} {Ο : Ultrafilter Ξ±} [inst : AddCommGroup Ξ²] [inst_1 : LinearOrder Ξ²] (x : (βΟ).Germ Ξ²),
|x| = Filter.Germ.map abs x
|
Mathlib.Tactic.Order.AtomicFact.nle.sizeOf_spec
|
Mathlib.Tactic.Order.CollectFacts
|
β (lhs rhs : β) (proof : Lean.Expr),
sizeOf (Mathlib.Tactic.Order.AtomicFact.nle lhs rhs proof) = 1 + sizeOf lhs + sizeOf rhs + sizeOf proof
|
Int.pow_gcd_pow
|
Init.Data.Int.Gcd
|
β {n m : β€} {k : β}, (n ^ k).gcd (m ^ k) = n.gcd m ^ k
|
CategoryTheory.Abelian.coimageFunctorIsoImageFunctor
|
Mathlib.CategoryTheory.Abelian.Basic
|
{C : Type u} β
[inst : CategoryTheory.Category.{v, u} C] β
[inst_1 : CategoryTheory.Abelian C] β CategoryTheory.Abelian.coim β
CategoryTheory.Abelian.im
|
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.Const.size_modify._simp_1_1
|
Std.Data.DTreeMap.Internal.Lemmas
|
β {Ξ± : Type u} {x : Ord Ξ±} {x_1 : BEq Ξ±} [Std.LawfulBEqOrd Ξ±] {a b : Ξ±}, (compare a b = Ordering.eq) = ((a == b) = true)
|
Interval.commMonoid
|
Mathlib.Algebra.Order.Interval.Basic
|
{Ξ± : Type u_2} β [inst : CommMonoid Ξ±] β [inst_1 : PartialOrder Ξ±] β [IsOrderedMonoid Ξ±] β CommMonoid (Interval Ξ±)
|
HasCardinalLT.Set.isColimitCocone._proof_2
|
Mathlib.CategoryTheory.Presentable.Type
|
β (X : Type u_1) (ΞΊ : Cardinal.{u_1}),
CategoryTheory.IsFiltered (HasCardinalLT.Set X ΞΊ) β CategoryTheory.IsFilteredOrEmpty (HasCardinalLT.Set X ΞΊ)
|
_private.Lean.Meta.Tactic.Grind.Split.0.Lean.Meta.Grind.checkSplitInfoArgStatus.match_1
|
Lean.Meta.Tactic.Grind.Split
|
(motive : Option Lean.Meta.Grind.SplitStatus β Sort u_1) β
(x : Option Lean.Meta.Grind.SplitStatus) β
(Unit β motive none) β ((a : Lean.Meta.Grind.SplitStatus) β motive (some a)) β motive x
|
subset_extentClosure_intentClosure
|
Mathlib.Order.Concept
|
β {Ξ± : Type u_2} {Ξ² : Type u_3} (r : Ξ± β Ξ² β Prop) (s : Set Ξ±), s β lowerPolar r (upperPolar r s)
|
MeasureTheory.intervalIntegral_integral_swap
|
Mathlib.MeasureTheory.Integral.Prod
|
β {Ξ± : Type u_1} {E : Type u_3} [inst : MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace β E] [MeasureTheory.SFinite ΞΌ] {a b : β} {f : β β Ξ± β E},
MeasureTheory.Integrable (Function.uncurry f) ((MeasureTheory.volume.restrict (Set.uIoc a b)).prod ΞΌ) β
β« (x : β) in a..b, β« (y : Ξ±), f x y βΞΌ = β« (y : Ξ±), β« (x : β) in a..b, f x y βΞΌ
|
MonCat.FilteredColimits.colimitMulOneClass._proof_1
|
Mathlib.Algebra.Category.MonCat.FilteredColimits
|
β {J : Type u_2} [inst : CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J MonCat)
[inst_1 : CategoryTheory.IsFiltered J] (x : MonCat.FilteredColimits.M F), 1 * x = x
|
CategoryTheory.StructuredArrow.preEquivalenceFunctor._proof_2
|
Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
|
β {C : Type u_3} [inst : CategoryTheory.Category.{u_1, u_3} C] {D : Type u_5}
[inst_1 : CategoryTheory.Category.{u_2, u_5} D] {E : Type u_6} [inst_2 : CategoryTheory.Category.{u_4, u_6} E]
(F : CategoryTheory.Functor C D) {G : CategoryTheory.Functor D E} {e : E} (f : CategoryTheory.StructuredArrow e G)
(X : CategoryTheory.StructuredArrow f (CategoryTheory.StructuredArrow.pre e F G)),
CategoryTheory.StructuredArrow.homMk (CategoryTheory.CategoryStruct.id X).right.right β― =
CategoryTheory.CategoryStruct.id (CategoryTheory.StructuredArrow.mk X.hom.right)
|
Lean.Compiler.LCNF.PP.ppLetValue
|
Lean.Compiler.LCNF.PrettyPrinter
|
Lean.Compiler.LCNF.LetValue β Lean.Compiler.LCNF.PP.M Std.Format
|
AddGroupExtension.Splitting.coe_addMonoidHom_mk
|
Mathlib.GroupTheory.GroupExtension.Defs
|
β {N : Type u_1} {E : Type u_2} {G : Type u_3} [inst : AddGroup N] [inst_1 : AddGroup E] [inst_2 : AddGroup G]
{S : AddGroupExtension N E G} (s : G β+ E) (hs : Function.RightInverse βs βS.rightHom),
β{ toAddMonoidHom := s, rightInverse_rightHom := hs } = s
|
CategoryTheory.Enriched.HasConicalLimitsOfSize.recOn
|
Mathlib.CategoryTheory.Enriched.Limits.HasConicalLimits
|
{V : Type u'} β
[inst : CategoryTheory.Category.{v', u'} V] β
[inst_1 : CategoryTheory.MonoidalCategory V] β
{C : Type u} β
[inst_2 : CategoryTheory.Category.{v, u} C] β
[inst_3 : CategoryTheory.EnrichedOrdinaryCategory V C] β
{motive : CategoryTheory.Enriched.HasConicalLimitsOfSize.{vβ, uβ, v', v, u, u'} V C β Sort u_1} β
(t : CategoryTheory.Enriched.HasConicalLimitsOfSize.{vβ, uβ, v', v, u, u'} V C) β
((hasConicalLimitsOfShape :
β (J : Type uβ) [inst_4 : CategoryTheory.Category.{vβ, uβ} J],
CategoryTheory.Enriched.HasConicalLimitsOfShape J V C) β
motive β―) β
motive t
|
GenLoop.continuous_fromLoop
|
Mathlib.Topology.Homotopy.HomotopyGroup
|
β {N : Type u_1} {X : Type u_2} [inst : TopologicalSpace X] {x : X} [inst_1 : DecidableEq N] (i : N),
Continuous (GenLoop.fromLoop i)
|
AddRightReflectLE
|
Mathlib.Algebra.Order.Monoid.Unbundled.Defs
|
(M : Type u_1) β [Add M] β [LE M] β Prop
|
Lean.ModuleData.mk.inj
|
Lean.Environment
|
β {isModule : Bool} {imports : Array Lean.Import} {constNames : Array Lean.Name} {constants : Array Lean.ConstantInfo}
{extraConstNames : Array Lean.Name} {entries : Array (Lean.Name Γ Array Lean.EnvExtensionEntry)} {isModule_1 : Bool}
{imports_1 : Array Lean.Import} {constNames_1 : Array Lean.Name} {constants_1 : Array Lean.ConstantInfo}
{extraConstNames_1 : Array Lean.Name} {entries_1 : Array (Lean.Name Γ Array Lean.EnvExtensionEntry)},
{ isModule := isModule, imports := imports, constNames := constNames, constants := constants,
extraConstNames := extraConstNames, entries := entries } =
{ isModule := isModule_1, imports := imports_1, constNames := constNames_1, constants := constants_1,
extraConstNames := extraConstNames_1, entries := entries_1 } β
isModule = isModule_1 β§
imports = imports_1 β§
constNames = constNames_1 β§ constants = constants_1 β§ extraConstNames = extraConstNames_1 β§ entries = entries_1
|
CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence._proof_7
|
Mathlib.CategoryTheory.Elements
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] (F : CategoryTheory.Functor Cα΅α΅ (Type u_1))
{X Y : CategoryTheory.CostructuredArrow CategoryTheory.yoneda F} (f : X βΆ Y),
CategoryTheory.CategoryStruct.comp (CategoryTheory.CostructuredArrow.homMk f.left β―)
(CategoryTheory.CostructuredArrow.isoMk (CategoryTheory.Iso.refl Y.left) β―).hom =
CategoryTheory.CategoryStruct.comp (CategoryTheory.CostructuredArrow.isoMk (CategoryTheory.Iso.refl X.left) β―).hom f
|
_private.Std.Time.Date.ValidDate.0.Std.Time.ValidDate.ofOrdinal.go._unary._proof_2
|
Std.Time.Date.ValidDate
|
β {leap : Bool} (ordinal : Std.Time.Day.Ordinal.OfYear leap) (idx : Std.Time.Month.Ordinal) (acc : β€), acc + 1 - acc = 1
|
Sublattice.map_map
|
Mathlib.Order.Sublattice
|
β {Ξ± : Type u_2} {Ξ² : Type u_3} {Ξ³ : Type u_4} [inst : Lattice Ξ±] [inst_1 : Lattice Ξ²] [inst_2 : Lattice Ξ³]
{L : Sublattice Ξ±} (g : LatticeHom Ξ² Ξ³) (f : LatticeHom Ξ± Ξ²),
Sublattice.map g (Sublattice.map f L) = Sublattice.map (g.comp f) L
|
SModEq.sub
|
Mathlib.LinearAlgebra.SModEq.Basic
|
β {R : Type u_1} [inst : Ring R] {M : Type u_4} [inst_1 : AddCommGroup M] [inst_2 : Module R M] {U : Submodule R M}
{xβ xβ yβ yβ : M}, xβ β‘ yβ [SMOD U] β xβ β‘ yβ [SMOD U] β xβ - xβ β‘ yβ - yβ [SMOD U]
|
Std.DTreeMap.Raw.Const.getKey?_filter
|
Std.Data.DTreeMap.Raw.Lemmas
|
β {Ξ± : Type u} {cmp : Ξ± β Ξ± β Ordering} {Ξ² : Type v} {t : Std.DTreeMap.Raw Ξ± (fun x => Ξ²) cmp} [inst : Std.TransCmp cmp]
{f : Ξ± β Ξ² β Bool} {k : Ξ±} (h : t.WF),
(Std.DTreeMap.Raw.filter f t).getKey? k = (t.getKey? k).pfilter fun x h' => f x (Std.DTreeMap.Raw.Const.get t x β―)
|
Lean.Expr.FoldConstsImpl.State.mk
|
Lean.Util.FoldConsts
|
Lean.PtrSet Lean.Expr β Lean.NameHashSet β Lean.Expr.FoldConstsImpl.State
|
instCommSemiringCorner._proof_6
|
Mathlib.RingTheory.Idempotents
|
β {R : Type u_1} (e : R) [inst : NonUnitalCommSemiring R] (idem : IsIdempotentElem e) (x : idem.Corner),
Semiring.npow 0 x = 1
|
Lean.Elab.DocElabInfo.noConfusion
|
Lean.Elab.InfoTree.Types
|
{P : Sort u} β {t t' : Lean.Elab.DocElabInfo} β t = t' β Lean.Elab.DocElabInfo.noConfusionType P t t'
|
CategoryTheory.Codiscrete.unitApp
|
Mathlib.CategoryTheory.CodiscreteCategory
|
(C : Type u) β [inst : CategoryTheory.Category.{v, u} C] β CategoryTheory.Functor C (CategoryTheory.Codiscrete C)
|
lt_of_le_of_ne'
|
Mathlib.Order.Defs.PartialOrder
|
β {Ξ± : Type u_1} [inst : PartialOrder Ξ±] {a b : Ξ±}, b β€ a β a β b β b < a
|
Int.add_modulus_mul_modEq_iff
|
Mathlib.Data.Int.ModEq
|
β {n a b c : β€}, a + n * b β‘ c [ZMOD n] β a β‘ c [ZMOD n]
|
_private.Mathlib.LinearAlgebra.Matrix.PosDef.0.Matrix.PosSemidef.natCast._simp_1_2
|
Mathlib.LinearAlgebra.Matrix.PosDef
|
β {R : Type u_1} [inst : NonUnitalSemiring R] [inst_1 : PartialOrder R] [inst_2 : StarRing R] [StarOrderedRing R]
{a : R}, 0 β€ a β β (c : R), (0 β€ star c * a * c) = True
|
QuadraticForm.tensorRId_symm_apply
|
Mathlib.LinearAlgebra.QuadraticForm.TensorProduct.Isometries
|
β {R : Type uR} {Mβ : Type uMβ} [inst : CommRing R] [inst_1 : AddCommGroup Mβ] [inst_2 : Module R Mβ]
[inst_3 : Invertible 2] (Qβ : QuadraticForm R Mβ) (x : Mβ), Qβ.tensorRId.symm x = (TensorProduct.rid R Mβ).symm x
|
SSet.S.dim_eq_of_mk_eq
|
Mathlib.AlgebraicTopology.SimplicialSet.Simplices
|
β {X : SSet} {n m : β} {x : X.obj (Opposite.op (SimplexCategory.mk n))}
{y : X.obj (Opposite.op (SimplexCategory.mk m))}, { dim := n, simplex := x } = { dim := m, simplex := y } β n = m
|
Sbtw.oangleβββ_eq_zero
|
Mathlib.Geometry.Euclidean.Angle.Oriented.Affine
|
β {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace β V] [inst_2 : MetricSpace P]
[inst_3 : NormedAddTorsor V P] [hd2 : Fact (Module.finrank β V = 2)] [inst_4 : Module.Oriented β V (Fin 2)]
{pβ pβ pβ : P}, Sbtw β pβ pβ pβ β EuclideanGeometry.oangle pβ pβ pβ = 0
|
CommRingCat.Colimits.Prequotient.of.sizeOf_spec
|
Mathlib.Algebra.Category.Ring.Colimits
|
β {J : Type v} [inst : CategoryTheory.SmallCategory J] {F : CategoryTheory.Functor J CommRingCat} [inst_1 : SizeOf J]
(j : J) (x : β(F.obj j)), sizeOf (CommRingCat.Colimits.Prequotient.of j x) = 1 + sizeOf j + sizeOf x
|
MeasureTheory.L1.measurable_coeFn
|
Mathlib.MeasureTheory.Function.L1Space.AEEqFun
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} [inst : NormedAddCommGroup Ξ²]
[inst_1 : MeasurableSpace Ξ²] [BorelSpace Ξ²] (f : β₯(MeasureTheory.Lp Ξ² 1 ΞΌ)), Measurable ββf
|
CategoryTheory.EnrichedNatTrans.mk
|
Mathlib.CategoryTheory.Enriched.Basic
|
{V : Type v} β
[inst : CategoryTheory.Category.{w, v} V] β
[inst_1 : CategoryTheory.MonoidalCategory V] β
{C : Type uβ} β
[inst_2 : CategoryTheory.EnrichedCategory V C] β
{D : Type uβ} β
[inst_3 : CategoryTheory.EnrichedCategory V D] β
{F G : CategoryTheory.EnrichedFunctor V C D} β (F.forget βΆ G.forget) β CategoryTheory.EnrichedNatTrans F G
|
_private.Mathlib.Analysis.Complex.PhragmenLindelof.0.PhragmenLindelof.horizontal_strip._simp_1_9
|
Mathlib.Analysis.Complex.PhragmenLindelof
|
β {Ξ± : Type u_1} [inst : DivisionCommMonoid Ξ±] (a b : Ξ±), bβ»ΒΉ * a = a / b
|
Matrix.mulVec_empty
|
Mathlib.LinearAlgebra.Matrix.Notation
|
β {Ξ± : Type u} {m' : Type uβ} [inst : NonUnitalNonAssocSemiring Ξ±] (A : Matrix m' (Fin 0) Ξ±) (v : Fin 0 β Ξ±),
A.mulVec v = 0
|
DifferentiableOn.zpow
|
Mathlib.Analysis.Calculus.Deriv.ZPow
|
β {π : Type u} [inst : NontriviallyNormedField π] {E : Type v} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace π E] {m : β€} {f : E β π} {t : Set E},
DifferentiableOn π f t β (β x β t, f x β 0) β¨ 0 β€ m β DifferentiableOn π (fun x => f x ^ m) t
|
Lat.ext
|
Mathlib.Order.Category.Lat
|
β {X Y : Lat} {f g : X βΆ Y},
(β (x : βX), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x) β f = g
|
TruncatedWittVector.truncate_wittVector_truncate
|
Mathlib.RingTheory.WittVector.Truncated
|
β {p n : β} {R : Type u_1} [inst : CommRing R] [inst_1 : Fact (Nat.Prime p)] {m : β} (hm : n β€ m) (x : WittVector p R),
(TruncatedWittVector.truncate hm) ((WittVector.truncate m) x) = (WittVector.truncate n) x
|
StarAlgHom.rangeRestrict
|
Mathlib.Algebra.Star.Subalgebra
|
{R : Type u_2} β
{A : Type u_3} β
{B : Type u_4} β
[inst : CommSemiring R] β
[inst_1 : StarRing R] β
[inst_2 : Semiring A] β
[inst_3 : Algebra R A] β
[inst_4 : StarRing A] β
[inst_5 : Semiring B] β
[inst_6 : Algebra R B] β
[inst_7 : StarRing B] β [inst_8 : StarModule R B] β (f : A βββ[R] B) β A βββ[R] β₯f.range
|
CategoryTheory.LocalizerMorphism.LeftResolution.instCategory._proof_4
|
Mathlib.CategoryTheory.Localization.Resolution
|
β {Cβ : Type u_2} {Cβ : Type u_4} [inst : CategoryTheory.Category.{u_1, u_2} Cβ]
[inst_1 : CategoryTheory.Category.{u_3, u_4} Cβ] {Wβ : CategoryTheory.MorphismProperty Cβ}
{Wβ : CategoryTheory.MorphismProperty Cβ} {Ξ¦ : CategoryTheory.LocalizerMorphism Wβ Wβ} {Xβ : Cβ}
{X Y : Ξ¦.LeftResolution Xβ} (f : X.Hom Y), f.comp (CategoryTheory.LocalizerMorphism.LeftResolution.Hom.id Y) = f
|
_private.Mathlib.Order.Interval.Set.UnorderedInterval.0.Set.monotoneOn_or_antitoneOn_iff_uIcc._simp_1_4
|
Mathlib.Order.Interval.Set.UnorderedInterval
|
β {Ξ± : Type u_1} [inst : LinearOrder Ξ±] {a b c : Ξ±}, (a β Set.uIcc b c) = (b β€ a β§ a β€ c β¨ c β€ a β§ a β€ b)
|
_private.Mathlib.Tactic.TFAE.0.Mathlib.Tactic.TFAE._aux_Mathlib_Tactic_TFAE___elabRules_Mathlib_Tactic_TFAE_tfaeFinish_1._sparseCasesOn_3
|
Mathlib.Tactic.TFAE
|
{motive : Lean.Name β Sort u} β
(t : Lean.Name) β
((pre : Lean.Name) β (str : String) β motive (pre.str str)) β (Nat.hasNotBit 2 t.ctorIdx β motive t) β motive t
|
SkewPolynomial.support
|
Mathlib.Algebra.SkewPolynomial.Basic
|
{R : Type u_1} β [inst : Semiring R] β SkewPolynomial R β Finset β
|
_private.Aesop.Tree.ExtractProof.0.Aesop.extractProofMVarCluster.match_1
|
Aesop.Tree.ExtractProof
|
(motive : Option Aesop.GoalRef β Sort u_1) β
(gref? : Option Aesop.GoalRef) β
((gref : Aesop.GoalRef) β motive (some gref)) β ((x : Option Aesop.GoalRef) β motive x) β motive gref?
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.