name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Filter.instDistribNeg._proof_2
Mathlib.Order.Filter.Pointwise
βˆ€ {Ξ± : Type u_1} [inst : Mul Ξ±] [inst_1 : HasDistribNeg Ξ±] (x x_1 : Filter Ξ±), Filter.mapβ‚‚ (fun x1 x2 => x1 * x2) x (Filter.map Neg.neg x_1) = Filter.map Neg.neg (Filter.mapβ‚‚ (fun x1 x2 => x1 * x2) x x_1)
CategoryTheory.LaxBraidedFunctor.hom_ext_iff
Mathlib.CategoryTheory.Monoidal.Braided.Basic
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] {D : Type uβ‚‚} [inst_3 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] [inst_4 : CategoryTheory.MonoidalCategory D] [inst_5 : CategoryTheory.BraidedCategory D] {F G : CategoryTheory.LaxBraidedFunctor C D} {Ξ± Ξ² : F ⟢ G}, Ξ± = Ξ² ↔ Ξ±.hom = Ξ².hom
CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork._proof_1
Mathlib.Algebra.Homology.ShortComplex.RightHomology
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) (hf : S.f = 0) (hg : S.g = 0) (c : CategoryTheory.Limits.CokernelCofork S.f) (hc : CategoryTheory.Limits.IsColimit c), CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.RightHomologyData.ofZeros S hf hg).p (CategoryTheory.Limits.Cofork.Ο€ c) = CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id S).Ο„β‚‚ (CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork S hg c hc).p
Std.Internal.IsStrictCut.toIsCut
Std.Data.Internal.Cut
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {cut : Ξ± β†’ Ordering} [self : Std.Internal.IsStrictCut cmp cut], Std.Internal.IsCut cmp cut
WellFoundedGT.toIsSuccArchimedean
Mathlib.Order.SuccPred.Archimedean
βˆ€ {Ξ± : Type u_1} [inst : PartialOrder Ξ±] [h : WellFoundedGT Ξ±] [inst_1 : SuccOrder Ξ±], IsSuccArchimedean Ξ±
AlgebraicGeometry.Scheme.IdealSheafData.support_bot
Mathlib.AlgebraicGeometry.IdealSheaf.Basic
βˆ€ {X : AlgebraicGeometry.Scheme}, βŠ₯.support = ⊀
ContDiffMapSupportedIn.iteratedFDerivLM_eq_of_scalars
Mathlib.Analysis.Distribution.ContDiffMapSupportedIn
βˆ€ (π•œ : Type u_1) {E : Type u_2} {F : Type u_3} [inst : NontriviallyNormedField π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace ℝ E] [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace ℝ F] [inst_5 : NormedSpace π•œ F] [inst_6 : SMulCommClass ℝ π•œ F] {K : TopologicalSpace.Compacts E} {i : β„•} (π•œ' : Type u_5) [inst_7 : NontriviallyNormedField π•œ'] [inst_8 : NormedSpace π•œ' F] [inst_9 : SMulCommClass ℝ π•œ' F], ⇑(ContDiffMapSupportedIn.iteratedFDerivLM π•œ i) = ⇑(ContDiffMapSupportedIn.iteratedFDerivLM π•œ' i)
AddMonoidHom.le_map_tsub
Mathlib.Algebra.Order.Sub.Unbundled.Hom
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : Preorder Ξ±] [inst_1 : AddCommMonoid Ξ±] [inst_2 : Sub Ξ±] [OrderedSub Ξ±] [inst_4 : Preorder Ξ²] [inst_5 : AddZeroClass Ξ²] [inst_6 : Sub Ξ²] [OrderedSub Ξ²] (f : Ξ± β†’+ Ξ²), Monotone ⇑f β†’ βˆ€ (a b : Ξ±), f a - f b ≀ f (a - b)
AddSubgroup.finiteIndex_iInf'
Mathlib.GroupTheory.Index
βˆ€ {G : Type u_1} [inst : AddGroup G] {ΞΉ : Type u_3} {s : Finset ΞΉ} (f : ΞΉ β†’ AddSubgroup G), (βˆ€ i ∈ s, (f i).FiniteIndex) β†’ (β¨… i ∈ s, f i).FiniteIndex
Finset.card_mul_singleton
Mathlib.Algebra.Group.Pointwise.Finset.Basic
βˆ€ {Ξ± : Type u_2} [inst : Mul Ξ±] [IsRightCancelMul Ξ±] [inst_2 : DecidableEq Ξ±] (s : Finset Ξ±) (a : Ξ±), (s * {a}).card = s.card
Affine.Triangle.sbtw_touchpoint_empty
Mathlib.Geometry.Euclidean.Incenter
βˆ€ {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MetricSpace P] [inst_3 : NormedAddTorsor V P] (t : Affine.Triangle ℝ P) {i₁ iβ‚‚ i₃ : Fin 3}, i₁ β‰  iβ‚‚ β†’ i₁ β‰  i₃ β†’ iβ‚‚ β‰  i₃ β†’ Sbtw ℝ (t.points i₁) (Affine.Simplex.touchpoint t βˆ… iβ‚‚) (t.points i₃)
_private.Mathlib.Analysis.SpecialFunctions.Trigonometric.Cotangent.0.tendsto_euler_sin_prod'._simp_1_6
Mathlib.Analysis.SpecialFunctions.Trigonometric.Cotangent
βˆ€ {Gβ‚€ : Type u_3} [inst : GroupWithZero Gβ‚€] {a : Gβ‚€} (n : β„€), a β‰  0 β†’ (a ^ n = 0) = False
_private.Mathlib.Algebra.Order.Star.Pi.0.Pi.instStarOrderedRing.match_6
Mathlib.Algebra.Order.Star.Pi
βˆ€ {ΞΉ : Type u_1} {A : ΞΉ β†’ Type u_2} [inst : (i : ΞΉ) β†’ NonUnitalSemiring (A i)] [inst_1 : (i : ΞΉ) β†’ StarRing (A i)] (x : (i : ΞΉ) β†’ A i) (motive : (βˆƒ y, βˆ€ (x_1 : ΞΉ), star (y x_1) * y x_1 = x x_1) β†’ Prop) (x_1 : βˆƒ y, βˆ€ (x_1 : ΞΉ), star (y x_1) * y x_1 = x x_1), (βˆ€ (y : (i : ΞΉ) β†’ A i) (hy : βˆ€ (x_2 : ΞΉ), star (y x_2) * y x_2 = x x_2), motive β‹―) β†’ motive x_1
_private.Mathlib.LinearAlgebra.RootSystem.Finite.G2.0.RootPairing.zero_le_pairingIn_of_root_sub_mem._simp_1_1
Mathlib.LinearAlgebra.RootSystem.Finite.G2
βˆ€ {G : Type u_1} [inst : SubNegMonoid G] (a b : G), a + -b = a - b
TendstoUniformlyOn.div
Mathlib.Topology.Algebra.IsUniformGroup.Basic
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : UniformSpace Ξ±] [inst_1 : Group Ξ±] [IsUniformGroup Ξ±] {ΞΉ : Type u_3} {l : Filter ΞΉ} {f f' : ΞΉ β†’ Ξ² β†’ Ξ±} {g g' : Ξ² β†’ Ξ±} {s : Set Ξ²}, TendstoUniformlyOn f g l s β†’ TendstoUniformlyOn f' g' l s β†’ TendstoUniformlyOn (f / f') (g / g') l s
AddGroupSeminorm.smul_sup
Mathlib.Analysis.Normed.Group.Seminorm
βˆ€ {R : Type u_1} {E : Type u_3} [inst : AddGroup E] [inst_1 : SMul R ℝ] [inst_2 : SMul R NNReal] [inst_3 : IsScalarTower R NNReal ℝ] (r : R) (p q : AddGroupSeminorm E), r β€’ (p βŠ” q) = r β€’ p βŠ” r β€’ q
_private.Mathlib.Data.List.Triplewise.0.List.triplewise_iff_getElem._simp_1_2
Mathlib.Data.List.Triplewise
βˆ€ {Ξ± : Type u_1} {R : Ξ± β†’ Ξ± β†’ Prop} {l : List Ξ±}, List.Pairwise R l = βˆ€ (i j : β„•) (_hi : i < l.length) (_hj : j < l.length), i < j β†’ R l[i] l[j]
_private.Mathlib.Algebra.Algebra.Subalgebra.Basic.0.AlgHom.rangeRestrict_surjective.match_1_1
Mathlib.Algebra.Algebra.Subalgebra.Basic
βˆ€ {R : Type u_2} {A : Type u_3} {B : Type u_1} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Algebra R A] [inst_3 : Semiring B] [inst_4 : Algebra R B] (f : A →ₐ[R] B) (_y : B) (motive : _y ∈ f.range β†’ Prop) (hy : _y ∈ f.range), (βˆ€ (x : A) (hx : f.toRingHom x = _y), motive β‹―) β†’ motive hy
_private.Mathlib.Algebra.Order.Interval.Set.Instances.0.Set.Ioo.one_sub_mem._simp_1_2
Mathlib.Algebra.Order.Interval.Set.Instances
βˆ€ {Ξ± : Type u} [inst : AddGroup Ξ±] [inst_1 : LT Ξ±] [AddRightStrictMono Ξ±] {a b : Ξ±}, (0 < a - b) = (b < a)
Units.inv_eq_val_inv
Mathlib.Algebra.Group.Units.Defs
βˆ€ {Ξ± : Type u} [inst : Monoid Ξ±] (a : Ξ±Λ£), a.inv = ↑a⁻¹
MeasureTheory.L2.instInnerSubtypeAEEqFunMemAddSubgroupLpOfNatENNReal
Mathlib.MeasureTheory.Function.L2Space
{Ξ± : Type u_1} β†’ {E : Type u_2} β†’ {π•œ : Type u_4} β†’ [inst : RCLike π•œ] β†’ [inst_1 : MeasurableSpace Ξ±] β†’ {ΞΌ : MeasureTheory.Measure Ξ±} β†’ [inst_2 : NormedAddCommGroup E] β†’ [InnerProductSpace π•œ E] β†’ Inner π•œ β†₯(MeasureTheory.Lp E 2 ΞΌ)
Nat.eq_two_pow_or_exists_odd_prime_and_dvd
Mathlib.Data.Nat.Factors
βˆ€ (n : β„•), (βˆƒ k, n = 2 ^ k) ∨ βˆƒ p, Nat.Prime p ∧ p ∣ n ∧ Odd p
_private.Mathlib.MeasureTheory.Group.Arithmetic.0.measurable_div_const'._simp_1_1
Mathlib.MeasureTheory.Group.Arithmetic
βˆ€ {M : Type u_2} {inst : MeasurableSpace M} {inst_1 : Mul M} [self : MeasurableMul M] (c : M), (Measurable fun x => x * c) = True
Continuous.enorm
Mathlib.Analysis.Normed.Group.Basic
βˆ€ {E : Type u_8} [inst : TopologicalSpace E] [inst_1 : ContinuousENorm E] {X : Type u_9} [inst_2 : TopologicalSpace X] {f : X β†’ E}, Continuous f β†’ Continuous fun x => β€–f xβ€–β‚‘
List.getElem_getElem_findIdxs_sub._proof_2
Batteries.Data.List.Lemmas
βˆ€ {i : β„•} {Ξ± : Type u_1} {xs : List Ξ±} {p : Ξ± β†’ Bool} (s : β„•) (h : i < (List.findIdxs p xs s).length), (List.findIdxs p xs s)[i] - s < xs.length
CompleteLat.Iso.mk
Mathlib.Order.Category.CompleteLat
{Ξ± Ξ² : CompleteLat} β†’ ↑α ≃o ↑β β†’ (Ξ± β‰… Ξ²)
CategoryTheory.EnrichedFunctor.comp_map
Mathlib.CategoryTheory.Enriched.Basic
βˆ€ (V : Type v) [inst : CategoryTheory.Category.{w, v} V] [inst_1 : CategoryTheory.MonoidalCategory V] {C : Type u₁} {D : Type uβ‚‚} {E : Type u₃} [inst_2 : CategoryTheory.EnrichedCategory V C] [inst_3 : CategoryTheory.EnrichedCategory V D] [inst_4 : CategoryTheory.EnrichedCategory V E] (F : CategoryTheory.EnrichedFunctor V C D) (G : CategoryTheory.EnrichedFunctor V D E) (x x_1 : C), (CategoryTheory.EnrichedFunctor.comp V F G).map x x_1 = CategoryTheory.CategoryStruct.comp (F.map x x_1) (G.map (F.obj x) (F.obj x_1))
tendsto_atTop_iSup
Mathlib.Topology.Order.MonotoneConvergence
βˆ€ {Ξ± : Type u_1} {ΞΉ : Type u_3} [inst : Preorder ΞΉ] [inst_1 : TopologicalSpace Ξ±] [inst_2 : CompleteLattice Ξ±] [SupConvergenceClass Ξ±] {f : ΞΉ β†’ Ξ±}, Monotone f β†’ Filter.Tendsto f Filter.atTop (nhds (⨆ i, f i))
_private.Mathlib.NumberTheory.FLT.Three.0.FermatLastTheoremForThreeGen.Solution.lambda_sq_not_dvd_a_add_eta_sq_mul_b._simp_1_3
Mathlib.NumberTheory.FLT.Three
βˆ€ {Mβ‚€ : Type u_1} [inst : CancelMonoidWithZero Mβ‚€] {a b c : Mβ‚€}, (a * b = a * c) = (b = c ∨ a = 0)
Nucleus.coe_toInfHom
Mathlib.Order.Nucleus
βˆ€ {X : Type u_1} [inst : SemilatticeInf X] (n : Nucleus X), ⇑n.toInfHom = ⇑n
ImplicitFunctionData.hasStrictFDerivAt
Mathlib.Analysis.Calculus.Implicit
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] [inst_3 : CompleteSpace E] {F : Type u_3} [inst_4 : NormedAddCommGroup F] [inst_5 : NormedSpace π•œ F] [inst_6 : CompleteSpace F] {G : Type u_4} [inst_7 : NormedAddCommGroup G] [inst_8 : NormedSpace π•œ G] [inst_9 : CompleteSpace G] (Ο† : ImplicitFunctionData π•œ E F G), HasStrictFDerivAt Ο†.prodFun (↑(Ο†.leftDeriv.equivProdOfSurjectiveOfIsCompl Ο†.rightDeriv β‹― β‹― β‹―)) Ο†.pt
SchwartzMap.toLp.eq_1
Mathlib.Analysis.Distribution.SchwartzSpace
βˆ€ {E : Type u_4} {F : Type u_5} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] [inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F] [inst_4 : MeasurableSpace E] [inst_5 : OpensMeasurableSpace E] [inst_6 : SecondCountableTopologyEither E F] (f : SchwartzMap E F) (p : ENNReal) (ΞΌ : MeasureTheory.Measure E) [hΞΌ : ΞΌ.HasTemperateGrowth], f.toLp p ΞΌ = MeasureTheory.MemLp.toLp ⇑f β‹―
List.IsChain.induction
Mathlib.Data.List.Chain
βˆ€ {Ξ± : Type u} {r : Ξ± β†’ Ξ± β†’ Prop} (p : Ξ± β†’ Prop) (l : List Ξ±), List.IsChain r l β†’ (βˆ€ ⦃x y : α⦄, r x y β†’ p x β†’ p y) β†’ (βˆ€ (lne : l β‰  []), p (l.head lne)) β†’ βˆ€ i ∈ l, p i
Std.Iterators.IteratorLoop.rel
Init.Data.Iterators.Consumers.Monadic.Loop
(Ξ± : Type w) β†’ (m : Type w β†’ Type w') β†’ {Ξ² : Type w} β†’ [Std.Iterators.Iterator Ξ± m Ξ²] β†’ {Ξ³ : Type x} β†’ (Ξ² β†’ Ξ³ β†’ ForInStep Ξ³ β†’ Prop) β†’ Std.IterM m Ξ² Γ— Ξ³ β†’ Std.IterM m Ξ² Γ— Ξ³ β†’ Prop
_private.Mathlib.Topology.Algebra.InfiniteSum.SummationFilter.0.SummationFilter.conditional_filter_eq_map_range._proof_1_6
Mathlib.Topology.Algebra.InfiniteSum.SummationFilter
βˆ€ (a b : β„•), b β‰₯ a + 1 β†’ b + 1 β‰₯ a
SchwartzMap.instAddCommGroup._proof_3
Mathlib.Analysis.Distribution.SchwartzSpace
βˆ€ {E : Type u_1} {F : Type u_2} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] [inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F] (x x_1 : SchwartzMap E F), ⇑(x + x_1) = ⇑(x + x_1)
Set.Iic_disjoint_Ioi._simp_1
Mathlib.Order.Interval.Set.Disjoint
βˆ€ {Ξ± : Type v} [inst : Preorder Ξ±] {a b : Ξ±}, a ≀ b β†’ Disjoint (Set.Iic a) (Set.Ioi b) = True
CategoryTheory.Functor.relativelyRepresentable.symmetryIso_inv
Mathlib.CategoryTheory.MorphismProperty.Representable
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] {F : CategoryTheory.Functor C D} {Y : D} {b : C} {f' : F.obj b ⟢ Y} (hf' : F.relativelyRepresentable f') {a : C} {g : F.obj a ⟢ Y} (hg : F.relativelyRepresentable g) [inst_2 : F.Full] [inst_3 : F.Faithful], (hf'.symmetryIso hg).inv = hg.symmetry hf'
AddGroupExtension._sizeOf_inst
Mathlib.GroupTheory.GroupExtension.Defs
(N : Type u_1) β†’ (E : Type u_2) β†’ (G : Type u_3) β†’ {inst : AddGroup N} β†’ {inst_1 : AddGroup E} β†’ {inst_2 : AddGroup G} β†’ [SizeOf N] β†’ [SizeOf E] β†’ [SizeOf G] β†’ SizeOf (AddGroupExtension N E G)
LinearMap.quotKerEquivOfSurjective_symm_apply
Mathlib.LinearAlgebra.Isomorphisms
βˆ€ {R : Type u_1} {M : Type u_2} {Mβ‚‚ : Type u_3} [inst : Ring R] [inst_1 : AddCommGroup M] [inst_2 : AddCommGroup Mβ‚‚] [inst_3 : Module R M] [inst_4 : Module R Mβ‚‚] (f : M β†’β‚—[R] Mβ‚‚) (hf : Function.Surjective ⇑f) (x : M), (f.quotKerEquivOfSurjective hf).symm (f x) = Submodule.Quotient.mk x
Quiver.IsSStronglyConnected
Mathlib.Combinatorics.Quiver.ConnectedComponent
(V : Type u_2) β†’ [Quiver V] β†’ Prop
_private.Mathlib.FieldTheory.SeparablyGenerated.0.exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_adjoin_eq_top.match_1_1
Mathlib.FieldTheory.SeparablyGenerated
βˆ€ {k : Type u_2} {K : Type u_3} {ΞΉ : Type u_1} [inst : Field k] [inst_1 : Field K] [inst_2 : Algebra k K] {a : ΞΉ β†’ K} (motive : (βˆƒ i, (IsTranscendenceBasis k fun j => a ↑j) ∧ IsSeparable (β†₯(IntermediateField.adjoin k (a '' {i}ᢜ))) (a i)) β†’ Prop) (x : βˆƒ i, (IsTranscendenceBasis k fun j => a ↑j) ∧ IsSeparable (β†₯(IntermediateField.adjoin k (a '' {i}ᢜ))) (a i)), (βˆ€ (i : ΞΉ) (hi : (IsTranscendenceBasis k fun j => a ↑j) ∧ IsSeparable (β†₯(IntermediateField.adjoin k (a '' {i}ᢜ))) (a i)), motive β‹―) β†’ motive x
StieltjesFunction.zero_apply
Mathlib.MeasureTheory.Measure.Stieltjes
βˆ€ (x : ℝ), ↑0 x = 0
subsetInfSet._proof_1
Mathlib.Order.CompleteLatticeIntervals
βˆ€ {Ξ± : Type u_1} (s : Set Ξ±) [inst : Preorder Ξ±] [inst_1 : InfSet Ξ±] (t : Set ↑s), t.Nonempty ∧ BddBelow t ∧ sInf (Subtype.val '' t) ∈ s β†’ sInf (Subtype.val '' t) ∈ s
CategoryTheory.Grothendieck.comp.eq_1
Mathlib.CategoryTheory.Grothendieck
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {F : CategoryTheory.Functor C CategoryTheory.Cat} {X Y Z : CategoryTheory.Grothendieck F} (f : X.Hom Y) (g : Y.Hom Z), CategoryTheory.Grothendieck.comp f g = { base := CategoryTheory.CategoryStruct.comp f.base g.base, fiber := CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom β‹―) (CategoryTheory.CategoryStruct.comp ((F.map g.base).map f.fiber) g.fiber) }
derivationQuotKerSq._proof_4
Mathlib.RingTheory.Smooth.Kaehler
βˆ€ (R : Type u_3) (P : Type u_1) (S : Type u_2) [inst : CommRing R] [inst_1 : CommRing P] [inst_2 : CommRing S] [inst_3 : Algebra R P] [inst_4 : Algebra P S] [inst_5 : Algebra R S] [inst_6 : IsScalarTower R P S], LinearMap.CompatibleSMul Ξ©[P⁄R] (TensorProduct P S Ξ©[P⁄R]) R P
_private.Init.Data.List.Erase.0.List.eraseP_filterMap.match_1.eq_2
Init.Data.List.Erase
βˆ€ {Ξ² : Type u_1} (motive : Option Ξ² β†’ Sort u_2) (h_1 : (y : Ξ²) β†’ motive (some y)) (h_2 : Unit β†’ motive none), (match none with | some y => h_1 y | none => h_2 ()) = h_2 ()
Lean.Meta.Grind.Arith.Linear.instMonadGetStructLinearM
Lean.Meta.Tactic.Grind.Arith.Linear.LinearM
Lean.Meta.Grind.Arith.Linear.MonadGetStruct Lean.Meta.Grind.Arith.Linear.LinearM
MulOpposite.instAdd
Mathlib.Algebra.Opposites
{Ξ± : Type u_1} β†’ [Add Ξ±] β†’ Add αᡐᡒᡖ
ContinuousOn.prodMk
Mathlib.Topology.ContinuousOn
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst : TopologicalSpace Ξ±] [inst_1 : TopologicalSpace Ξ²] [inst_2 : TopologicalSpace Ξ³] {f : Ξ± β†’ Ξ²} {g : Ξ± β†’ Ξ³} {s : Set Ξ±}, ContinuousOn f s β†’ ContinuousOn g s β†’ ContinuousOn (fun x => (f x, g x)) s
PrincipalSeg.ofElement
Mathlib.Order.InitialSeg
{Ξ± : Type u_4} β†’ (r : Ξ± β†’ Ξ± β†’ Prop) β†’ (a : Ξ±) β†’ PrincipalSeg (Subrel r fun x => r x a) r
AlgebraicGeometry.Scheme.Pullback.gluedLift._proof_2
Mathlib.AlgebraicGeometry.Pullbacks
βˆ€ {X Y Z : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (f : X ⟢ Z) (g : Y ⟢ Z) (s : CategoryTheory.Limits.PullbackCone f g) (i : (CategoryTheory.Precoverage.ZeroHypercover.pullback₁ s.fst 𝒰).Iβ‚€), CategoryTheory.Limits.HasPullback s.fst (𝒰.f i)
PresheafOfModules.pushforwardβ‚€._proof_3
Mathlib.Algebra.Category.ModuleCat.Presheaf.Pushforward
βˆ€ {C : Type u_5} [inst : CategoryTheory.Category.{u_6, u_5} C] {D : Type u_3} [inst_1 : CategoryTheory.Category.{u_2, u_3} D] (F : CategoryTheory.Functor C D) (R : CategoryTheory.Functor Dα΅’α΅– RingCat) (X : PresheafOfModules R), { app := fun X_1 => (CategoryTheory.CategoryStruct.id X).app (F.op.obj X_1), naturality := β‹― } = CategoryTheory.CategoryStruct.id (PresheafOfModules.pushforwardβ‚€_obj F R X)
CategoryTheory.Presieve.yonedaFamilyOfElements_fromCocone
Mathlib.CategoryTheory.Sites.SheafOfTypes
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {X : C} β†’ (R : CategoryTheory.Presieve X) β†’ (s : CategoryTheory.Limits.Cocone R.diagram) β†’ CategoryTheory.Presieve.FamilyOfElements (CategoryTheory.yoneda.obj s.pt) R
AffineSubspace.smul_vsub_vadd_mem
Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Defs
βˆ€ {k : Type u_1} {V : Type u_2} {P : Type u_3} [inst : Ring k] [inst_1 : AddCommGroup V] [inst_2 : Module k V] [inst_3 : AddTorsor V P] (self : AffineSubspace k P) (c : k) {p₁ pβ‚‚ p₃ : P}, p₁ ∈ self.carrier β†’ pβ‚‚ ∈ self.carrier β†’ p₃ ∈ self.carrier β†’ c β€’ (p₁ -α΅₯ pβ‚‚) +α΅₯ p₃ ∈ self.carrier
RelSeries.ctorIdx
Mathlib.Order.RelSeries
{Ξ± : Type u_1} β†’ {r : SetRel Ξ± Ξ±} β†’ RelSeries r β†’ β„•
CategoryTheory.IsMonHom.one_hom._autoParam
Mathlib.CategoryTheory.Monoidal.Mon_
Lean.Syntax
_private.Qq.ForLean.ToExpr.0.toExprLevel.match_1
Qq.ForLean.ToExpr
(motive : Lean.Level β†’ Sort u_1) β†’ (x : Lean.Level) β†’ (Unit β†’ motive Lean.Level.zero) β†’ ((l : Lean.Level) β†’ motive l.succ) β†’ ((l₁ lβ‚‚ : Lean.Level) β†’ motive (l₁.max lβ‚‚)) β†’ ((l₁ lβ‚‚ : Lean.Level) β†’ motive (l₁.imax lβ‚‚)) β†’ ((n : Lean.Name) β†’ motive (Lean.Level.param n)) β†’ ((n : Lean.LMVarId) β†’ motive (Lean.Level.mvar n)) β†’ motive x
SimpleGraph.instMax
Mathlib.Combinatorics.SimpleGraph.Basic
{V : Type u} β†’ Max (SimpleGraph V)
DirectSum.liftRingHom._proof_3
Mathlib.Algebra.DirectSum.Ring
βˆ€ {ΞΉ : Type u_1} [inst : DecidableEq ΞΉ] {A : ΞΉ β†’ Type u_2} {R : Type u_3} [inst_1 : (i : ΞΉ) β†’ AddCommMonoid (A i)] [inst_2 : AddMonoid ΞΉ] [inst_3 : DirectSum.GSemiring A] [inst_4 : Semiring R], AddMonoidHomClass ((DirectSum ΞΉ fun i => A i) β†’+* R) (DirectSum ΞΉ fun i => A i) R
_private.Mathlib.MeasureTheory.Measure.Haar.NormedSpace.0.MeasureTheory.Measure.setIntegral_comp_smul._simp_1_1
Mathlib.MeasureTheory.Measure.Haar.NormedSpace
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} {f : Ξ± β†’ Ξ²} {g : Ξ² β†’ Ξ³} {s : Set Ξ³}, f ⁻¹' (g ⁻¹' s) = g ∘ f ⁻¹' s
_private.Mathlib.RingTheory.PowerSeries.NoZeroDivisors.0.PowerSeries.instNoZeroDivisors._simp_1
Mathlib.RingTheory.PowerSeries.NoZeroDivisors
βˆ€ {R : Type u_1} [inst : Semiring R] {Ο† : PowerSeries R}, (Ο† = 0) = (Ο†.order = ⊀)
TopologicalSpace.IsTopologicalBasis.of_isOpen_of_subset
Mathlib.Topology.Bases
βˆ€ {Ξ± : Type u} [t : TopologicalSpace Ξ±] {s s' : Set (Set Ξ±)}, (βˆ€ u ∈ s', IsOpen u) β†’ TopologicalSpace.IsTopologicalBasis s β†’ s βŠ† s' β†’ TopologicalSpace.IsTopologicalBasis s'
Lean.Parser.Tactic.Grind.grindAdmit
Init.Grind.Interactive
Lean.ParserDescr
_private.Std.Time.Date.ValidDate.0.Std.Time.ValidDate.ofOrdinal._proof_2
Std.Time.Date.ValidDate
βˆ€ {leap : Bool} (ordinal : Std.Time.Day.Ordinal.OfYear leap) (idx : Std.Time.Month.Ordinal) (acc : β„€), Β¬acc + ↑(Std.Time.Month.Ordinal.days leap idx) - acc = ↑(Std.Time.Month.Ordinal.days leap idx) β†’ False
CategoryTheory.Limits.HasCountableCoproducts.casesOn
Mathlib.CategoryTheory.Limits.Shapes.Countable
{C : Type u_1} β†’ [inst : CategoryTheory.Category.{u_3, u_1} C] β†’ {motive : CategoryTheory.Limits.HasCountableCoproducts C β†’ Sort u} β†’ (t : CategoryTheory.Limits.HasCountableCoproducts C) β†’ ((out : βˆ€ (J : Type) [Countable J], CategoryTheory.Limits.HasCoproductsOfShape J C) β†’ motive β‹―) β†’ motive t
_private.Lean.Server.Completion.ImportCompletion.0.ImportCompletion.computePartialImportCompletions.match_6
Lean.Server.Completion.ImportCompletion
(motive : Option (Lean.Name Γ— String) β†’ Sort u_1) β†’ (x : Option (Lean.Name Γ— String)) β†’ ((completePrefix : Lean.Name) β†’ (incompleteSuffix : String) β†’ motive (some (completePrefix, incompleteSuffix))) β†’ ((x : Option (Lean.Name Γ— String)) β†’ motive x) β†’ motive x
Lean.Widget.instToJsonRpcEncodablePacket._@.Lean.Server.FileWorker.WidgetRequests.433270988._hygCtx._hyg.43
Lean.Server.FileWorker.WidgetRequests
Lean.ToJson Lean.Widget.RpcEncodablePacket✝
TrivSqZeroExt.invertibleFstOfInvertible._proof_2
Mathlib.Algebra.TrivSqZeroExt
βˆ€ {R : Type u_1} {M : Type u_2} [inst : AddCommGroup M] [inst_1 : Semiring R] [inst_2 : Module Rᡐᡒᡖ M] [inst_3 : Module R M] (x : TrivSqZeroExt R M) [inst_4 : Invertible x], x.fst * (β…Ÿx).fst = 1
PNat.natPred_eq_pred
Mathlib.Data.PNat.Defs
βˆ€ {n : β„•} (h : 0 < n), PNat.natPred ⟨n, h⟩ = n.pred
List.modify_succ_cons
Init.Data.List.Nat.Modify
βˆ€ {Ξ± : Type u_1} (f : Ξ± β†’ Ξ±) (a : Ξ±) (l : List Ξ±) (i : β„•), (a :: l).modify (i + 1) f = a :: l.modify i f
MultilinearMap.alternatization._proof_8
Mathlib.LinearAlgebra.Alternating.Basic
βˆ€ {R : Type u_3} [inst : Semiring R] {M : Type u_4} [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {N' : Type u_2} [inst_3 : AddCommGroup N'] [inst_4 : Module R N'] {ΞΉ : Type u_1} [inst_5 : Fintype ΞΉ] [inst_6 : DecidableEq ΞΉ] (a b : MultilinearMap R (fun x => M) N') [inst_7 : DecidableEq ΞΉ] (m : ΞΉ β†’ M) (i : ΞΉ) (c : R) (x : M), (βˆ‘ Οƒ, Equiv.Perm.sign Οƒ β€’ MultilinearMap.domDomCongr Οƒ (a + b)).toFun (Function.update m i (c β€’ x)) = c β€’ (βˆ‘ Οƒ, Equiv.Perm.sign Οƒ β€’ MultilinearMap.domDomCongr Οƒ (a + b)).toFun (Function.update m i x)
Finset.card_le_of_interleaved
Mathlib.Data.Finset.Max
βˆ€ {Ξ± : Type u_2} [inst : LinearOrder Ξ±] {s t : Finset Ξ±}, (βˆ€ x ∈ s, βˆ€ y ∈ s, x < y β†’ (βˆ€ z ∈ s, z βˆ‰ Set.Ioo x y) β†’ βˆƒ z ∈ t, x < z ∧ z < y) β†’ s.card ≀ t.card + 1
_private.Mathlib.MeasureTheory.Integral.IntervalIntegral.Slope.0.IntervalIntegrable.intervalIntegrable_slope._proof_1_3
Mathlib.MeasureTheory.Integral.IntervalIntegral.Slope
βˆ€ {a b c : ℝ}, a ≀ b β†’ 0 ≀ c β†’ Set.uIcc a b βŠ† Set.uIcc a (b + c)
AddEquiv.ext
Mathlib.Algebra.Group.Equiv.Defs
βˆ€ {M : Type u_4} {N : Type u_5} [inst : Add M] [inst_1 : Add N] {f g : M ≃+ N}, (βˆ€ (x : M), f x = g x) β†’ f = g
SetTheory.PGame.Relabelling.subCongr
Mathlib.SetTheory.PGame.Algebra
{w x y z : SetTheory.PGame} β†’ w.Relabelling x β†’ y.Relabelling z β†’ (w - y).Relabelling (x - z)
IsLocalMax.norm_add_self
Mathlib.Analysis.Normed.Module.Extr
βˆ€ {X : Type u_2} {E : Type u_3} [inst : SeminormedAddCommGroup E] [NormedSpace ℝ E] [inst_2 : TopologicalSpace X] {f : X β†’ E} {c : X}, IsLocalMax (norm ∘ f) c β†’ IsLocalMax (fun x => β€–f x + f cβ€–) c
Lean.Meta.Grind.Arith.Cutsat.LeCnstr.mk._flat_ctor
Lean.Meta.Tactic.Grind.Arith.Cutsat.Types
Int.Linear.Poly β†’ Lean.Meta.Grind.Arith.Cutsat.LeCnstrProof β†’ Lean.Meta.Grind.Arith.Cutsat.LeCnstr
Batteries.RBNode.append._unary.eq_def
Batteries.Data.RBMap.Basic
βˆ€ {Ξ± : Type u_1} (_x : (_ : Batteries.RBNode Ξ±) Γ—' Batteries.RBNode Ξ±), Batteries.RBNode.append._unary _x = PSigma.casesOn _x fun a a_1 => match a, a_1 with | Batteries.RBNode.nil, x => x | x, Batteries.RBNode.nil => x | Batteries.RBNode.node Batteries.RBColor.red a x b, Batteries.RBNode.node Batteries.RBColor.red c y d => match Batteries.RBNode.append._unary ⟨b, c⟩ with | Batteries.RBNode.node Batteries.RBColor.red b' z c' => Batteries.RBNode.node Batteries.RBColor.red (Batteries.RBNode.node Batteries.RBColor.red a x b') z (Batteries.RBNode.node Batteries.RBColor.red c' y d) | bc => Batteries.RBNode.node Batteries.RBColor.red a x (Batteries.RBNode.node Batteries.RBColor.red bc y d) | Batteries.RBNode.node Batteries.RBColor.black a x b, Batteries.RBNode.node Batteries.RBColor.black c y d => match Batteries.RBNode.append._unary ⟨b, c⟩ with | Batteries.RBNode.node Batteries.RBColor.red b' z c' => Batteries.RBNode.node Batteries.RBColor.red (Batteries.RBNode.node Batteries.RBColor.black a x b') z (Batteries.RBNode.node Batteries.RBColor.black c' y d) | bc => a.balLeft x (Batteries.RBNode.node Batteries.RBColor.black bc y d) | a@h:(Batteries.RBNode.node Batteries.RBColor.black l v r), Batteries.RBNode.node Batteries.RBColor.red b x c => Batteries.RBNode.node Batteries.RBColor.red (Batteries.RBNode.append._unary ⟨a, b⟩) x c | Batteries.RBNode.node Batteries.RBColor.red a x b, c@h:(Batteries.RBNode.node Batteries.RBColor.black l v r) => Batteries.RBNode.node Batteries.RBColor.red a x (Batteries.RBNode.append._unary ⟨b, c⟩)
Aesop.UnsafeQueue.instEmptyCollection
Aesop.Tree.UnsafeQueue
EmptyCollection Aesop.UnsafeQueue
_private.Init.Data.List.MapIdx.0.Option.getD.match_1.splitter
Init.Data.List.MapIdx
{Ξ± : Type u_1} β†’ (motive : Option Ξ± β†’ Sort u_2) β†’ (opt : Option Ξ±) β†’ ((x : Ξ±) β†’ motive (some x)) β†’ motive none β†’ motive opt
_private.Std.Data.ExtDHashMap.Basic.0.Std.ExtDHashMap.filter._proof_1
Std.Data.ExtDHashMap.Basic
βˆ€ {Ξ± : Type u_1} {Ξ² : Ξ± β†’ Type u_2} {x : BEq Ξ±} {x_1 : Hashable Ξ±} (f : (a : Ξ±) β†’ Ξ² a β†’ Bool) (m m' : Std.DHashMap Ξ± Ξ²), m.Equiv m' β†’ Std.ExtDHashMap.mk (Std.DHashMap.filter f m) = Std.ExtDHashMap.mk (Std.DHashMap.filter f m')
MeasureTheory.SimpleFunc.bind._proof_2
Mathlib.MeasureTheory.Function.SimpleFunc
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} {Ξ³ : Type u_1} [inst : MeasurableSpace Ξ±] (f : MeasureTheory.SimpleFunc Ξ± Ξ²) (g : Ξ² β†’ MeasureTheory.SimpleFunc Ξ± Ξ³), (Set.range fun a => (g (f a)) a).Finite
Tropical.instLinearOrderTropical._proof_1
Mathlib.Algebra.Tropical.Basic
βˆ€ {R : Type u_1} [inst : LinearOrder R] (a b : Tropical R), Tropical.untrop a ≀ Tropical.untrop b ∨ Tropical.untrop b ≀ Tropical.untrop a
CategoryTheory.CommGrp.forgetβ‚‚CommMon_map_hom
Mathlib.CategoryTheory.Monoidal.CommGrp_
βˆ€ (C : Type u₁) [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] {A B : CategoryTheory.CommGrp C} (f : A ⟢ B), ((CategoryTheory.CommGrp.forgetβ‚‚CommMon C).map f).hom = f.hom
UInt64.toUInt8_or
Init.Data.UInt.Bitwise
βˆ€ (a b : UInt64), (a ||| b).toUInt8 = a.toUInt8 ||| b.toUInt8
_private.Lean.Meta.Tactic.Grind.Anchor.0.Lean.Meta.Grind.getAnchor.match_4
Lean.Meta.Tactic.Grind.Anchor
(motive : Lean.Expr β†’ Sort u_1) β†’ (e : Lean.Expr) β†’ ((declName : Lean.Name) β†’ (us : List Lean.Level) β†’ motive (Lean.Expr.const declName us)) β†’ ((fvarId : Lean.FVarId) β†’ motive (Lean.Expr.fvar fvarId)) β†’ ((data : Lean.MData) β†’ (b : Lean.Expr) β†’ motive (Lean.Expr.mdata data b)) β†’ ((n : Lean.Name) β†’ (v t b : Lean.Expr) β†’ (nondep : Bool) β†’ motive (Lean.Expr.letE n v t b nondep)) β†’ ((n : Lean.Name) β†’ (d b : Lean.Expr) β†’ (binderInfo : Lean.BinderInfo) β†’ motive (Lean.Expr.lam n d b binderInfo)) β†’ ((n : Lean.Name) β†’ (d b : Lean.Expr) β†’ (binderInfo : Lean.BinderInfo) β†’ motive (Lean.Expr.forallE n d b binderInfo)) β†’ ((typeName : Lean.Name) β†’ (i : β„•) β†’ (s : Lean.Expr) β†’ motive (Lean.Expr.proj typeName i s)) β†’ ((idx : β„•) β†’ motive (Lean.Expr.bvar idx)) β†’ ((v : Lean.Literal) β†’ motive (Lean.Expr.lit v)) β†’ ((fn arg : Lean.Expr) β†’ motive (fn.app arg)) β†’ ((u : Lean.Level) β†’ motive (Lean.Expr.sort u)) β†’ ((mvarId : Lean.MVarId) β†’ motive (Lean.Expr.mvar mvarId)) β†’ motive e
Lean.SCC.State.recOn
Lean.Util.SCC
{Ξ± : Type} β†’ [inst : BEq Ξ±] β†’ [inst_1 : Hashable Ξ±] β†’ {motive : Lean.SCC.State Ξ± β†’ Sort u} β†’ (t : Lean.SCC.State Ξ±) β†’ ((stack : List Ξ±) β†’ (nextIndex : β„•) β†’ (data : Std.HashMap Ξ± Lean.SCC.Data) β†’ (sccs : List (List Ξ±)) β†’ motive { stack := stack, nextIndex := nextIndex, data := data, sccs := sccs }) β†’ motive t
_private.Mathlib.RingTheory.Unramified.Finite.0.Algebra.FormallyUnramified.finite_of_free_aux._simp_1_6
Mathlib.RingTheory.Unramified.Finite
βˆ€ {Ξ± : Type u_1} {M : Type u_4} [inst : Zero M] {f : Ξ± β†’β‚€ M} {a : Ξ±}, (a ∈ f.support) = (f a β‰  0)
FirstOrder.Language.LEquiv.symm_invLHom
Mathlib.ModelTheory.LanguageMap
βˆ€ {L : FirstOrder.Language} {L' : FirstOrder.Language} (e : L ≃ᴸ L'), e.symm.invLHom = e.toLHom
_private.Mathlib.Computability.PostTuringMachine.0.Turing.TM1.stmts_supportsStmt._simp_1_4
Mathlib.Computability.PostTuringMachine
βˆ€ {Ξ± : Type u_1} {a : Ξ±} {b : Option Ξ±}, (a ∈ b) = (b = some a)
CommGroup.toDistribLattice.eq_1
Mathlib.Algebra.Order.Group.Lattice
βˆ€ (Ξ± : Type u_2) [inst : Lattice Ξ±] [inst_1 : CommGroup Ξ±] [inst_2 : MulLeftMono Ξ±], CommGroup.toDistribLattice Ξ± = { toLattice := inst, le_sup_inf := β‹― }
Ctop.Realizer.id._proof_1
Mathlib.Data.Analysis.Topology
βˆ€ {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] (x x_1 : { x // IsOpen x }) (_a : Ξ±) (h : _a ∈ ↑x ∩ ↑x_1), _a ∈ ↑(match x, h with | ⟨_x, hβ‚βŸ©, _h₃ => match x_1, _h₃ with | ⟨_y, hβ‚‚βŸ©, _h₃ => ⟨_x ∩ _y, β‹―βŸ©)
Lean.Lsp.CompletionClientCapabilities.casesOn
Lean.Data.Lsp.Capabilities
{motive : Lean.Lsp.CompletionClientCapabilities β†’ Sort u} β†’ (t : Lean.Lsp.CompletionClientCapabilities) β†’ ((completionItem? : Option Lean.Lsp.CompletionItemCapabilities) β†’ motive { completionItem? := completionItem? }) β†’ motive t
not_or._simp_3
Mathlib.Tactic.Push
βˆ€ {p q : Prop}, (Β¬p ∧ Β¬q) = Β¬(p ∨ q)
Vector.finRev?_push
Init.Data.Vector.Find
βˆ€ {Ξ± : Type} {n : β„•} {p : Ξ± β†’ Bool} {a : Ξ±} {xs : Vector Ξ± n}, Vector.findRev? p (xs.push a) = (Option.guard p a).or (Vector.findRev? p xs)
Finset.sup_inf_sup
Mathlib.Data.Finset.Lattice.Prod
βˆ€ {Ξ± : Type u_2} {ΞΉ : Type u_5} {ΞΊ : Type u_6} [inst : DistribLattice Ξ±] [inst_1 : OrderBot Ξ±] (s : Finset ΞΉ) (t : Finset ΞΊ) (f : ΞΉ β†’ Ξ±) (g : ΞΊ β†’ Ξ±), s.sup f βŠ“ t.sup g = (s Γ—Λ’ t).sup fun i => f i.1 βŠ“ g i.2
List.cons_sublist_iff
Init.Data.List.Sublist
βˆ€ {Ξ± : Type u_1} {a : Ξ±} {l l' : List Ξ±}, (a :: l).Sublist l' ↔ βˆƒ r₁ rβ‚‚, l' = r₁ ++ rβ‚‚ ∧ a ∈ r₁ ∧ l.Sublist rβ‚‚
Subring.toRing
Mathlib.Algebra.Ring.Subring.Defs
{R : Type u} β†’ [inst : Ring R] β†’ (s : Subring R) β†’ Ring β†₯s
_private.Lean.Elab.Tactic.ElabTerm.0.Lean.Elab.Tactic.refineCore._sparseCasesOn_1
Lean.Elab.Tactic.ElabTerm
{Ξ± : Type u} β†’ {motive : Option Ξ± β†’ Sort u_1} β†’ (t : Option Ξ±) β†’ ((val : Ξ±) β†’ motive (some val)) β†’ (t.ctorIdx β‰  1 β†’ motive t) β†’ motive t