name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
GroupExtension.Equiv.trans_apply
|
Mathlib.GroupTheory.GroupExtension.Defs
|
β {N : Type u_1} {E : Type u_2} {G : Type u_3} [inst : Group N] [inst_1 : Group E] [inst_2 : Group G]
{S : GroupExtension N E G} {E' : Type u_4} [inst_3 : Group E'] {S' : GroupExtension N E' G} (equiv : S.Equiv S')
{E'' : Type u_5} [inst_4 : Group E''] {S'' : GroupExtension N E'' G} (equiv' : S'.Equiv S'') (a : E),
(equiv.trans equiv') a = equiv' (equiv a)
|
Part.elim_toOption
|
Mathlib.Data.Part
|
β {Ξ± : Type u_4} {Ξ² : Type u_5} (a : Part Ξ±) [inst : Decidable a.Dom] (b : Ξ²) (f : Ξ± β Ξ²),
a.toOption.elim b f = if h : a.Dom then f (a.get h) else b
|
SeminormFamily.basisSets_univ_mem
|
Mathlib.Analysis.LocallyConvex.WithSeminorms
|
β {R : Type u_1} {E : Type u_6} {ΞΉ : Type u_9} [inst : SeminormedRing R] [inst_1 : AddCommGroup E] [inst_2 : Module R E]
(p : SeminormFamily R E ΞΉ), Set.univ β p.basisSets
|
EuclideanSpace.nnnorm_single
|
Mathlib.Analysis.InnerProductSpace.PiL2
|
β {ΞΉ : Type u_1} {π : Type u_3} [inst : RCLike π] [inst_1 : DecidableEq ΞΉ] [inst_2 : Fintype ΞΉ] (i : ΞΉ) (a : π),
βEuclideanSpace.single i aββ = βaββ
|
CategoryTheory.Limits.limitCompYonedaIsoCocone_hom_app
|
Mathlib.CategoryTheory.Limits.Types.Yoneda
|
β {J : Type v} [inst : CategoryTheory.SmallCategory J] {C : Type u} [inst_1 : CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor J C) (X : C) (a : CategoryTheory.Limits.limit (F.op.comp (CategoryTheory.yoneda.obj X)))
(j : J),
((CategoryTheory.Limits.limitCompYonedaIsoCocone F X).hom a).app j =
CategoryTheory.Limits.limit.Ο (F.op.comp (CategoryTheory.yoneda.obj X)) (Opposite.op j) a
|
Std.ExtHashMap.getKeyD_alter_self
|
Std.Data.ExtHashMap.Lemmas
|
β {Ξ± : Type u} {Ξ² : Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.ExtHashMap Ξ± Ξ²} [inst : EquivBEq Ξ±]
[inst_1 : LawfulHashable Ξ±] [Inhabited Ξ±] {k fallback : Ξ±} {f : Option Ξ² β Option Ξ²},
(m.alter k f).getKeyD k fallback = if (f m[k]?).isSome = true then k else fallback
|
SemiNormedGrp.hom_id
|
Mathlib.Analysis.Normed.Group.SemiNormedGrp
|
β {M : SemiNormedGrp}, SemiNormedGrp.Hom.hom (CategoryTheory.CategoryStruct.id M) = NormedAddGroupHom.id M.carrier
|
BoundedContinuousFunction.instRing._proof_18
|
Mathlib.Topology.ContinuousMap.Bounded.Normed
|
β {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] {R : Type u_2} [inst_1 : SeminormedRing R]
(a b : BoundedContinuousFunction Ξ± R), a - b = a + -b
|
_private.Lean.Meta.MkIffOfInductiveProp.0.Lean.Meta.nCasesProd.match_5
|
Lean.Meta.MkIffOfInductiveProp
|
(motive : Array Lean.Meta.CasesSubgoal β Sort u_1) β
(__discr : Array Lean.Meta.CasesSubgoal) β
((sg : Lean.Meta.CasesSubgoal) β motive #[sg]) β ((x : Array Lean.Meta.CasesSubgoal) β motive x) β motive __discr
|
TensorProduct.finsuppRight_symm_apply_single
|
Mathlib.LinearAlgebra.DirectSum.Finsupp
|
β {R : Type u_1} [inst : CommSemiring R] {M : Type u_2} [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {N : Type u_3}
[inst_3 : AddCommMonoid N] [inst_4 : Module R N] {ΞΉ : Type u_4} [inst_5 : DecidableEq ΞΉ] (i : ΞΉ) (m : M) (n : N),
((TensorProduct.finsuppRight R M N ΞΉ).symm funβ | i => m ββ[R] n) = m ββ[R] funβ | i => n
|
Array.get!Internal
|
Init.Prelude
|
{Ξ± : Type u} β [Inhabited Ξ±] β Array Ξ± β β β Ξ±
|
Lean.SourceInfo.ctorIdx
|
Init.Prelude
|
Lean.SourceInfo β β
|
instLinearOrderedAddCommGroupWithTopAdditiveOrderDual._proof_7
|
Mathlib.Algebra.Order.GroupWithZero.Canonical
|
β {Ξ± : Type u_1} [inst : LinearOrderedCommGroupWithZero Ξ±] (a : Additive Ξ±α΅α΅),
a β β€ β Additive.toMul a * (Additive.toMul a)β»ΒΉ = 1
|
EuclideanDomain.lcm
|
Mathlib.Algebra.EuclideanDomain.Defs
|
{R : Type u} β [EuclideanDomain R] β [DecidableEq R] β R β R β R
|
NumberField.IsCMField.starRing
|
Mathlib.NumberTheory.NumberField.CMField
|
(K : Type u_1) β
[inst : Field K] β [inst_1 : CharZero K] β [NumberField.IsCMField K] β [Algebra.IsIntegral β K] β StarRing K
|
Real.iteratedDerivWithin_cos_Ioo
|
Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv
|
β (n : β) {a b x : β}, x β Set.Ioo a b β iteratedDerivWithin n Real.cos (Set.Ioo a b) x = iteratedDeriv n Real.cos x
|
ModularGroup.eq_smul_self_of_mem_fdo_mem_fdo
|
Mathlib.NumberTheory.Modular
|
β {g : Matrix.SpecialLinearGroup (Fin 2) β€} {z : UpperHalfPlane},
z β ModularGroup.fdo β g β’ z β ModularGroup.fdo β z = g β’ z
|
MulEquiv.mk.inj
|
Mathlib.Algebra.Group.Equiv.Defs
|
β {M : Type u_9} {N : Type u_10} {inst : Mul M} {inst_1 : Mul N} {toEquiv : M β N}
{map_mul' : β (x y : M), toEquiv.toFun (x * y) = toEquiv.toFun x * toEquiv.toFun y} {toEquiv_1 : M β N}
{map_mul'_1 : β (x y : M), toEquiv_1.toFun (x * y) = toEquiv_1.toFun x * toEquiv_1.toFun y},
{ toEquiv := toEquiv, map_mul' := map_mul' } = { toEquiv := toEquiv_1, map_mul' := map_mul'_1 } β toEquiv = toEquiv_1
|
LLVM.buildGEP2
|
Lean.Compiler.IR.LLVMBindings
|
{ctx : LLVM.Context} β
LLVM.Builder ctx β
LLVM.LLVMType ctx β LLVM.Value ctx β Array (LLVM.Value ctx) β optParam String "" β BaseIO (LLVM.Value ctx)
|
CategoryTheory.Limits.coneUnopOfCocone_pt
|
Mathlib.CategoryTheory.Limits.Cones
|
β {J : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} J] {C : Type uβ} [inst_1 : CategoryTheory.Category.{vβ, uβ} C]
{F : CategoryTheory.Functor Jα΅α΅ Cα΅α΅} (c : CategoryTheory.Limits.Cocone F),
(CategoryTheory.Limits.coneUnopOfCocone c).pt = Opposite.unop c.pt
|
CategoryTheory.FintypeCat.Action.isConnected_iff_transitive
|
Mathlib.CategoryTheory.Galois.Examples
|
β (G : Type u) [inst : Group G] (X : Action FintypeCat G) [Nonempty X.V.carrier],
CategoryTheory.PreGaloisCategory.IsConnected X β MulAction.IsPretransitive G X.V.carrier
|
Set.exists_min_image
|
Mathlib.Data.Set.Finite.Lemmas
|
β {Ξ± : Type u} {Ξ² : Type v} [inst : LinearOrder Ξ²] (s : Set Ξ±) (f : Ξ± β Ξ²),
s.Finite β s.Nonempty β β a β s, β b β s, f a β€ f b
|
MulHom.prod_comp_prodMap
|
Mathlib.Algebra.Group.Prod
|
β {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} [inst : Mul M] [inst_1 : Mul N]
[inst_2 : Mul M'] [inst_3 : Mul N'] [inst_4 : Mul P] (f : P ββ* M) (g : P ββ* N) (f' : M ββ* M') (g' : N ββ* N'),
(f'.prodMap g').comp (f.prod g) = (f'.comp f).prod (g'.comp g)
|
_private.Std.Time.Format.Basic.0.Std.Time.GenericFormat.DateBuilder.H
|
Std.Time.Format.Basic
|
Std.Time.GenericFormat.DateBuilderβ β Option Std.Time.Hour.Ordinal
|
ONote.opowAux2.match_1
|
Mathlib.SetTheory.Ordinal.Notation
|
(motive : ONote Γ β β Sort u_1) β
(x : ONote Γ β) β ((b : ONote) β motive (b, 0)) β ((b : ONote) β (k : β) β motive (b, k.succ)) β motive x
|
Module.Basis.adjustToOrientation.congr_simp
|
Mathlib.LinearAlgebra.Orientation
|
β {R : Type u_1} [inst : CommRing R] [inst_1 : LinearOrder R] [inst_2 : IsStrictOrderedRing R] {M : Type u_2}
[inst_3 : AddCommGroup M] [inst_4 : Module R M] {ΞΉ : Type u_3} [inst_5 : Fintype ΞΉ] [inst_6 : DecidableEq ΞΉ]
[inst_7 : Nonempty ΞΉ] (e e_1 : Module.Basis ΞΉ R M),
e = e_1 β β (x x_1 : Orientation R M ΞΉ), x = x_1 β e.adjustToOrientation x = e_1.adjustToOrientation x_1
|
MeasureTheory.IsFundamentalDomain.measure_zero_of_invariant
|
Mathlib.MeasureTheory.Group.FundamentalDomain
|
β {G : Type u_1} {Ξ± : Type u_3} [inst : Group G] [inst_1 : MulAction G Ξ±] [inst_2 : MeasurableSpace Ξ±] {s : Set Ξ±}
{ΞΌ : MeasureTheory.Measure Ξ±} [inst_3 : MeasurableSpace G] [MeasurableSMul G Ξ±]
[MeasureTheory.SMulInvariantMeasure G Ξ± ΞΌ] [Countable G],
MeasureTheory.IsFundamentalDomain G s ΞΌ β β (t : Set Ξ±), (β (g : G), g β’ t = t) β ΞΌ (t β© s) = 0 β ΞΌ t = 0
|
differentiable_neg
|
Mathlib.Analysis.Calculus.Deriv.Add
|
β {π : Type u} [inst : NontriviallyNormedField π], Differentiable π Neg.neg
|
CategoryTheory.Functor.Final.rec
|
Mathlib.CategoryTheory.Limits.Final
|
{C : Type uβ} β
[inst : CategoryTheory.Category.{vβ, uβ} C] β
{D : Type uβ} β
[inst_1 : CategoryTheory.Category.{vβ, uβ} D] β
{F : CategoryTheory.Functor C D} β
{motive : F.Final β Sort u} β
((out : β (d : D), CategoryTheory.IsConnected (CategoryTheory.StructuredArrow d F)) β motive β―) β
(t : F.Final) β motive t
|
Units.val
|
Mathlib.Algebra.Group.Units.Defs
|
{Ξ± : Type u} β [inst : Monoid Ξ±] β Ξ±Λ£ β Ξ±
|
_private.Init.Data.List.Find.0.List.find?_replicate_eq_none_iff._simp_1_1
|
Init.Data.List.Find
|
β {a b : Prop}, (a β¨ b) = (Β¬a β b)
|
CategoryTheory.PreZeroHypercover.pullbackIso
|
Mathlib.CategoryTheory.Sites.Hypercover.Zero
|
{C : Type u} β
[inst : CategoryTheory.Category.{v, u} C] β
{S T : C} β
(f : S βΆ T) β
(E : CategoryTheory.PreZeroHypercover T) β
[inst_1 : β (i : E.Iβ), CategoryTheory.Limits.HasPullback f (E.f i)] β
[inst_2 : β (i : E.Iβ), CategoryTheory.Limits.HasPullback (E.f i) f] β
CategoryTheory.PreZeroHypercover.pullbackβ f E β
CategoryTheory.PreZeroHypercover.pullbackβ f E
|
Set.iUnion_iUnion_eq_right
|
Mathlib.Data.Set.Lattice
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {b : Ξ²} {s : (x : Ξ²) β b = x β Set Ξ±}, β x, β (h : b = x), s x h = s b β―
|
Std.DHashMap.Internal.Raw.Const.get_eq
|
Std.Data.DHashMap.Internal.Raw
|
β {Ξ± : Type u} {Ξ² : Type v} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {m : Std.DHashMap.Raw Ξ± fun x => Ξ²} {a : Ξ±}
{h : a β m}, Std.DHashMap.Raw.Const.get m a h = Std.DHashMap.Internal.Rawβ.Const.get β¨m, β―β© a β―
|
Localization.partialOrder.congr_simp
|
Mathlib.GroupTheory.MonoidLocalization.Order
|
β {Ξ± : Type u_1} [inst : CommMonoid Ξ±] [inst_1 : PartialOrder Ξ±] [inst_2 : IsOrderedCancelMonoid Ξ±] {s : Submonoid Ξ±},
Localization.partialOrder = Localization.partialOrder
|
toLexLinearEquiv
|
Mathlib.Algebra.Order.Module.Equiv
|
(Ξ± : Type u_1) β
(Ξ² : Type u_2) β [inst : Semiring Ξ±] β [inst_1 : AddCommMonoid Ξ²] β [inst_2 : Module Ξ± Ξ²] β Ξ² ββ[Ξ±] Lex Ξ²
|
SupHom.recOn
|
Mathlib.Order.Hom.Lattice
|
{Ξ± : Type u_6} β
{Ξ² : Type u_7} β
[inst : Max Ξ±] β
[inst_1 : Max Ξ²] β
{motive : SupHom Ξ± Ξ² β Sort u} β
(t : SupHom Ξ± Ξ²) β
((toFun : Ξ± β Ξ²) β
(map_sup' : β (a b : Ξ±), toFun (a β b) = toFun a β toFun b) β
motive { toFun := toFun, map_sup' := map_sup' }) β
motive t
|
_private.Init.Data.Vector.Lemmas.0.Vector.mem_flatten._simp_1_1
|
Init.Data.Vector.Lemmas
|
β {Ξ± : Type u_1} {a : Ξ±} {xss : Array (Array Ξ±)}, (a β xss.flatten) = β xs β xss, a β xs
|
_private.Init.Data.Array.Basic.0.Array.findSomeRevM?.find.match_1
|
Init.Data.Array.Basic
|
{Ξ² : Type u_1} β
(motive : Option Ξ² β Sort u_2) β (r : Option Ξ²) β ((val : Ξ²) β motive (some val)) β (Unit β motive none) β motive r
|
normalize_eq_one
|
Mathlib.Algebra.GCDMonoid.Basic
|
β {Ξ± : Type u_1} [inst : CancelCommMonoidWithZero Ξ±] [inst_1 : NormalizationMonoid Ξ±] {x : Ξ±},
normalize x = 1 β IsUnit x
|
_private.Mathlib.MeasureTheory.Integral.Bochner.Basic.0.Mathlib.Meta.Positivity.evalIntegral._proof_2
|
Mathlib.MeasureTheory.Integral.Bochner.Basic
|
β (Ξ± : Q(Type)) (pΞ± : Q(PartialOrder Β«$Ξ±Β»)) (__defeqres : PLift (Β«$pΞ±Β» =Q Real.partialOrder)),
Β«$pΞ±Β» =Q Real.partialOrder
|
Matrix.Semiring.smulCommClass
|
Mathlib.Data.Matrix.Mul
|
β {n : Type u_3} {R : Type u_7} {Ξ± : Type v} [inst : NonUnitalNonAssocSemiring Ξ±] [inst_1 : Fintype n]
[inst_2 : Monoid R] [inst_3 : DistribMulAction R Ξ±] [SMulCommClass R Ξ± Ξ±],
SMulCommClass R (Matrix n n Ξ±) (Matrix n n Ξ±)
|
_private.Lean.Linter.ConstructorAsVariable.0.Lean.Linter.constructorNameAsVariable.match_1
|
Lean.Linter.ConstructorAsVariable
|
(motive : Option Lean.Expr β Sort u_1) β
(x : Option Lean.Expr) β ((t : Lean.Expr) β motive (some t)) β ((x : Option Lean.Expr) β motive x) β motive x
|
_private.Lean.Compiler.LCNF.Simp.JpCases.0.Lean.Compiler.LCNF.Simp.mkJmpArgsAtJp
|
Lean.Compiler.LCNF.Simp.JpCases
|
Array Lean.Compiler.LCNF.Param β β β Array Lean.Compiler.LCNF.Param β Bool β Array Lean.Compiler.LCNF.Arg
|
_private.Mathlib.Order.LiminfLimsup.0.CompleteLatticeHom.apply_limsup_iterate._simp_1_1
|
Mathlib.Order.LiminfLimsup
|
β (n m : β), (n + m).succ = n + m.succ
|
Trivialization.map_proj_nhds
|
Mathlib.Topology.FiberBundle.Trivialization
|
β {B : Type u_1} {F : Type u_2} {Z : Type u_4} [inst : TopologicalSpace B] [inst_1 : TopologicalSpace F] {proj : Z β B}
[inst_2 : TopologicalSpace Z] (e : Trivialization F proj) {x : Z},
x β e.source β Filter.map proj (nhds x) = nhds (proj x)
|
sigmaFinsuppAddEquivDFinsupp._proof_2
|
Mathlib.Data.Finsupp.ToDFinsupp
|
β {ΞΉ : Type u_3} {Ξ· : ΞΉ β Type u_2} {N : Type u_1} [inst : AddZeroClass N],
Function.RightInverse sigmaFinsuppEquivDFinsupp.invFun sigmaFinsuppEquivDFinsupp.toFun
|
_private.Mathlib.Tactic.Ring.Basic.0.Mathlib.Tactic.Ring.cast_neg.match_1_1
|
Mathlib.Tactic.Ring.Basic
|
β {n : β} {R : Type u_1} [inst : Ring R] {a : R} (motive : Mathlib.Meta.NormNum.IsInt a (Int.negOfNat n) β Prop)
(x : Mathlib.Meta.NormNum.IsInt a (Int.negOfNat n)), (β (e : a = β(Int.negOfNat n)), motive β―) β motive x
|
IsUniformAddGroup.isLeftUniformAddGroup
|
Mathlib.Topology.Algebra.IsUniformGroup.Defs
|
β (Ξ± : Type u_1) [inst : UniformSpace Ξ±] [inst_1 : AddGroup Ξ±] [IsUniformAddGroup Ξ±], IsLeftUniformAddGroup Ξ±
|
Action.inv_hom_hom_assoc
|
Mathlib.CategoryTheory.Action.Basic
|
β {V : Type u_1} [inst : CategoryTheory.Category.{u_3, u_1} V] {G : Type u_2} [inst_1 : Monoid G] {M N : Action V G}
(f : M β
N) {Z : V} (h : N.V βΆ Z),
CategoryTheory.CategoryStruct.comp f.inv.hom (CategoryTheory.CategoryStruct.comp f.hom.hom h) = h
|
_private.Mathlib.Analysis.Complex.PhragmenLindelof.0._aux_Mathlib_Analysis_Complex_PhragmenLindelof___macroRules__private_Mathlib_Analysis_Complex_PhragmenLindelof_0_termExpR_1
|
Mathlib.Analysis.Complex.PhragmenLindelof
|
Lean.Macro
|
instCommRingCorner._proof_2
|
Mathlib.RingTheory.Idempotents
|
β {R : Type u_1} (e : R) [inst : NonUnitalCommRing R] (a b c : β₯(NonUnitalRing.corner e)), a * (b + c) = a * b + a * c
|
Complex.cpow_two
|
Mathlib.Analysis.SpecialFunctions.Pow.Complex
|
β (x : β), x ^ 2 = x ^ 2
|
ContinuousMultilinearMap.flipLinear._proof_9
|
Mathlib.Analysis.Normed.Module.Multilinear.Basic
|
β {π : Type u_4} {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} {G : Type u_5} {G' : Type u_1} [inst : NontriviallyNormedField π]
[inst_1 : (i : ΞΉ) β SeminormedAddCommGroup (E i)] [inst_2 : (i : ΞΉ) β NormedSpace π (E i)]
[inst_3 : SeminormedAddCommGroup G] [inst_4 : NormedSpace π G] [inst_5 : SeminormedAddCommGroup G']
[inst_6 : NormedSpace π G'] [inst_7 : Fintype ΞΉ] (f : ContinuousMultilinearMap π E (G βL[π] G')) (x : G)
(m : (i : ΞΉ) β E i),
β({ toFun := fun x => { toFun := fun m => (f m) x, map_update_add' := β―, map_update_smul' := β― }, map_add' := β―,
map_smul' := β― }
x)
mβ β€
βfβ * βxβ * β i, βm iβ
|
Lean.Elab.Tactic.ElabSimpArgsResult.mk.inj
|
Lean.Elab.Tactic.Simp
|
β {ctx : Lean.Meta.Simp.Context} {simprocs : Lean.Meta.Simp.SimprocsArray}
{simpArgs : Array (Lean.Syntax Γ Lean.Elab.Tactic.ElabSimpArgResult)} {ctx_1 : Lean.Meta.Simp.Context}
{simprocs_1 : Lean.Meta.Simp.SimprocsArray} {simpArgs_1 : Array (Lean.Syntax Γ Lean.Elab.Tactic.ElabSimpArgResult)},
{ ctx := ctx, simprocs := simprocs, simpArgs := simpArgs } =
{ ctx := ctx_1, simprocs := simprocs_1, simpArgs := simpArgs_1 } β
ctx = ctx_1 β§ simprocs = simprocs_1 β§ simpArgs = simpArgs_1
|
Lean.Core.numBinders
|
Lean.Meta.ExprLens
|
{M : Type β Type} β [Monad M] β [Lean.MonadError M] β Lean.SubExpr.Pos β Lean.Expr β M β
|
MeromorphicAt.update
|
Mathlib.Analysis.Meromorphic.Basic
|
β {π : Type u_1} [inst : NontriviallyNormedField π] {E : Type u_2} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace π E] [inst_3 : DecidableEq π] {f : π β E} {z : π},
MeromorphicAt f z β β (w : π) (e : E), MeromorphicAt (Function.update f w e) z
|
_private.Mathlib.Analysis.Real.OfDigits.0.Real.ofDigits_const_last_eq_one._simp_1_6
|
Mathlib.Analysis.Real.OfDigits
|
β {Ξ± : Type u_2} [inst : Zero Ξ±] [inst_1 : OfNat Ξ± 3] [NeZero 3], (3 = 0) = False
|
CategoryTheory.Limits.inl_inl_pushoutAssoc_hom_assoc
|
Mathlib.CategoryTheory.Limits.Shapes.Pullback.Assoc
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {Xβ Xβ Xβ Zβ Zβ : C} (gβ : Zβ βΆ Xβ) (gβ : Zβ βΆ Xβ)
(gβ : Zβ βΆ Xβ) (gβ : Zβ βΆ Xβ) [inst_1 : CategoryTheory.Limits.HasPushout gβ gβ]
[inst_2 : CategoryTheory.Limits.HasPushout gβ gβ]
[inst_3 :
CategoryTheory.Limits.HasPushout (CategoryTheory.CategoryStruct.comp gβ (CategoryTheory.Limits.pushout.inr gβ gβ))
gβ]
[inst_4 :
CategoryTheory.Limits.HasPushout gβ
(CategoryTheory.CategoryStruct.comp gβ (CategoryTheory.Limits.pushout.inl gβ gβ))]
{Z : C}
(h :
CategoryTheory.Limits.pushout gβ (CategoryTheory.CategoryStruct.comp gβ (CategoryTheory.Limits.pushout.inl gβ gβ)) βΆ
Z),
CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pushout.inl gβ gβ)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.pushout.inl
(CategoryTheory.CategoryStruct.comp gβ (CategoryTheory.Limits.pushout.inr gβ gβ)) gβ)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pushoutAssoc gβ gβ gβ gβ).hom h)) =
CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.pushout.inl gβ
(CategoryTheory.CategoryStruct.comp gβ (CategoryTheory.Limits.pushout.inl gβ gβ)))
h
|
_private.Lean.Meta.Tactic.Grind.Solve.0.Lean.Meta.Grind.solve._sparseCasesOn_1
|
Lean.Meta.Tactic.Grind.Solve
|
{Ξ± : Type u} β
{motive : List Ξ± β Sort u_1} β
(t : List Ξ±) β ((head : Ξ±) β (tail : List Ξ±) β motive (head :: tail)) β (t.ctorIdx β 1 β motive t) β motive t
|
Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst._proof_10
|
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.ShiftLeft
|
β {w : β}, 0 β€ w
|
Lean.Compiler.LCNF.Probe.countUnique
|
Lean.Compiler.LCNF.Probing
|
{Ξ± : Type} β [ToString Ξ±] β [BEq Ξ±] β [Hashable Ξ±] β Lean.Compiler.LCNF.Probe Ξ± (Ξ± Γ β)
|
NormedDivisionRing.nnratCast._inherited_default
|
Mathlib.Analysis.Normed.Field.Basic
|
{Ξ± : Type u_5} β (β β Ξ±) β (Ξ± β Ξ± β Ξ±) β ββ₯0 β Ξ±
|
Filter.tendsto_ofReal_iff'
|
Mathlib.Analysis.Complex.Basic
|
β {Ξ± : Type u_2} {π : Type u_3} [inst : RCLike π] {l : Filter Ξ±} {f : Ξ± β β} {x : β},
Filter.Tendsto (fun x => β(f x)) l (nhds βx) β Filter.Tendsto f l (nhds x)
|
Lean.Grind.AC.instBEqSeq.beq._sparseCasesOn_1
|
Init.Grind.AC
|
{motive : Lean.Grind.AC.Seq β Sort u} β
(t : Lean.Grind.AC.Seq) β
((x : Lean.Grind.AC.Var) β motive (Lean.Grind.AC.Seq.var x)) β (t.ctorIdx β 0 β motive t) β motive t
|
Lean.ToLevel.ctorIdx
|
Lean.ToLevel
|
Lean.ToLevel β β
|
Lean.IR.MaxIndex.visitFnBody
|
Lean.Compiler.IR.FreeVars
|
Lean.IR.FnBody β Lean.IR.MaxIndex.M Unit
|
Lean.Json.Β«json[_]Β»
|
Lean.Data.Json.Elab
|
Lean.ParserDescr
|
ExceptT.bindCont.match_1
|
Init.Control.Except
|
{Ξ΅ Ξ± : Type u_1} β
(motive : Except Ξ΅ Ξ± β Sort u_2) β
(x : Except Ξ΅ Ξ±) β ((a : Ξ±) β motive (Except.ok a)) β ((e : Ξ΅) β motive (Except.error e)) β motive x
|
CategoryTheory.FunctorToTypes.binaryProductEquiv._proof_2
|
Mathlib.CategoryTheory.Limits.Shapes.FunctorToTypes
|
β {C : Type u_3} [inst : CategoryTheory.Category.{u_2, u_3} C] (F G : CategoryTheory.Functor C (Type u_1)) (a : C)
(x : F.obj a Γ G.obj a),
(((CategoryTheory.FunctorToTypes.binaryProductIso F G).hom.app a
((CategoryTheory.FunctorToTypes.binaryProductIso F G).inv.app a (x.1, x.2))).1,
((CategoryTheory.FunctorToTypes.binaryProductIso F G).hom.app a
((CategoryTheory.FunctorToTypes.binaryProductIso F G).inv.app a (x.1, x.2))).2) =
x
|
Lean.ModuleSetup.mk
|
Lean.Setup
|
Lean.Name β
Bool β
Option (Array Lean.Import) β
Lean.NameMap Lean.ImportArtifacts β
Array System.FilePath β Array System.FilePath β Lean.LeanOptions β Lean.ModuleSetup
|
ContinuousMap.comp.eq_1
|
Mathlib.Condensed.TopComparison
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst : TopologicalSpace Ξ±] [inst_1 : TopologicalSpace Ξ²]
[inst_2 : TopologicalSpace Ξ³] (f : C(Ξ², Ξ³)) (g : C(Ξ±, Ξ²)), f.comp g = { toFun := βf β βg, continuous_toFun := β― }
|
LLVM.instNonemptyModule
|
Lean.Compiler.IR.LLVMBindings
|
β {ctx : LLVM.Context}, Nonempty (LLVM.Module ctx)
|
Lean.Parser.parserAliases2infoRef
|
Lean.Parser.Extension
|
IO.Ref (Lean.NameMap Lean.Parser.ParserAliasInfo)
|
FirstOrder.Language.Substructure.mem_comap
|
Mathlib.ModelTheory.Substructures
|
β {L : FirstOrder.Language} {M : Type w} {N : Type u_1} [inst : L.Structure M] [inst_1 : L.Structure N]
{S : L.Substructure N} {f : L.Hom M N} {x : M}, x β FirstOrder.Language.Substructure.comap f S β f x β S
|
CategoryTheory.Presieve.BindStruct.hf
|
Mathlib.CategoryTheory.Sites.Sieves
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] {X : C} {S : CategoryTheory.Presieve X}
{R : β¦Y : Cβ¦ β β¦f : Y βΆ Xβ¦ β S f β CategoryTheory.Presieve Y} {Z : C} {h : Z βΆ X} (self : S.BindStruct R h), S self.f
|
_private.Aesop.Frontend.Command.0.Aesop.Frontend.Parser.evalStatsReport?.match_4
|
Aesop.Frontend.Command
|
(motive : DoResultPR Aesop.StatsReport (Option Aesop.StatsReport) PUnit.{1} β Sort u_1) β
(r : DoResultPR Aesop.StatsReport (Option Aesop.StatsReport) PUnit.{1}) β
((a : Aesop.StatsReport) β (u : PUnit.{1}) β motive (DoResultPR.pure a u)) β
((b : Option Aesop.StatsReport) β (u : PUnit.{1}) β motive (DoResultPR.return b u)) β motive r
|
EuclideanGeometry.sin_oangle_right_mul_dist_of_oangle_eq_pi_div_two
|
Mathlib.Geometry.Euclidean.Angle.Oriented.RightAngle
|
β {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace β V] [inst_2 : MetricSpace P]
[inst_3 : NormedAddTorsor V P] [hd2 : Fact (Module.finrank β V = 2)] [inst_4 : Module.Oriented β V (Fin 2)]
{pβ pβ pβ : P},
EuclideanGeometry.oangle pβ pβ pβ = β(Real.pi / 2) β (EuclideanGeometry.oangle pβ pβ pβ).sin * dist pβ pβ = dist pβ pβ
|
Algebra.Generators.compLocalizationAwayAlgHom_relation_eq_zero
|
Mathlib.RingTheory.Extension.Cotangent.LocalizationAway
|
β {R : Type u_1} {S : Type u_2} {T : Type u_3} {ΞΉ : Type u_4} [inst : CommRing R] [inst_1 : CommRing S]
[inst_2 : Algebra R S] [inst_3 : CommRing T] [inst_4 : Algebra R T] [inst_5 : Algebra S T]
[inst_6 : IsScalarTower R S T] (g : S) [inst_7 : IsLocalization.Away g T] (P : Algebra.Generators R S ΞΉ),
(Algebra.Generators.compLocalizationAwayAlgHom T g P)
((MvPolynomial.rename Sum.inr) (P.Ο g) * MvPolynomial.X (Sum.inl ()) - 1) =
0
|
SSet.coskAdj
|
Mathlib.AlgebraicTopology.SimplicialSet.Basic
|
(n : β) β SSet.truncation n β£ SSet.Truncated.cosk n
|
CochainComplex.mappingCone.d_fst_v'
|
Mathlib.Algebra.Homology.HomotopyCategory.MappingCone
|
β {C : Type u_1} [inst : CategoryTheory.Category.{v, u_1} C] [inst_1 : CategoryTheory.Preadditive C]
{F G : CochainComplex C β€} (Ο : F βΆ G) [inst_2 : HomologicalComplex.HasHomotopyCofiber Ο] (i j : β€) (hij : i + 1 = j),
CategoryTheory.CategoryStruct.comp ((CochainComplex.mappingCone Ο).d (i - 1) i)
((β(CochainComplex.mappingCone.fst Ο)).v i j hij) =
-CategoryTheory.CategoryStruct.comp ((β(CochainComplex.mappingCone.fst Ο)).v (i - 1) i β―) (F.d i j)
|
enorm_ne_zero
|
Mathlib.Analysis.Normed.Group.Basic
|
β {E : Type u_8} [inst : TopologicalSpace E] [inst_1 : ENormedAddMonoid E] {a : E}, βaββ β 0 β a β 0
|
SSet.PtSimplex.MulStruct.mk._flat_ctor
|
Mathlib.AlgebraicTopology.SimplicialSet.KanComplex.MulStruct
|
{X : SSet} β
{n : β} β
{x : X.obj (Opposite.op (SimplexCategory.mk 0))} β
{f g fg : X.PtSimplex n x} β
{i : Fin n} β
(map : SSet.stdSimplex.obj (SimplexCategory.mk (n + 1)) βΆ X) β
autoParam (CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.Ξ΄ i.castSucc.castSucc) map = g.map)
SSet.PtSimplex.MulStruct.Ξ΄_castSucc_castSucc_map._autoParam β
autoParam (CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.Ξ΄ i.castSucc.succ) map = fg.map)
SSet.PtSimplex.MulStruct.Ξ΄_succ_castSucc_map._autoParam β
autoParam (CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.Ξ΄ i.succ.succ) map = f.map)
SSet.PtSimplex.MulStruct.Ξ΄_succ_succ_map._autoParam β
autoParam
(β j < i.castSucc.castSucc,
CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.Ξ΄ j) map = SSet.const x)
SSet.PtSimplex.MulStruct.Ξ΄_map_of_lt._autoParam β
autoParam
(β (j : Fin (n + 2)),
i.succ.succ < j β CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.Ξ΄ j) map = SSet.const x)
SSet.PtSimplex.MulStruct.Ξ΄_map_of_gt._autoParam β
f.MulStruct g fg i
|
_private.Lean.Meta.IndPredBelow.0.Lean.Meta.IndPredBelow.mkBelowMatcher._sparseCasesOn_7
|
Lean.Meta.IndPredBelow
|
{motive : Bool β Sort u} β (t : Bool) β motive false β (t.ctorIdx β 0 β motive t) β motive t
|
Std.Iterators.Array.iter_equiv_iter_toList
|
Std.Data.Iterators.Lemmas.Producers.Array
|
β {Ξ± : Type w} {array : Array Ξ±}, array.iter.Equiv array.toList.iter
|
ENNReal.coe_iInf._simp_1
|
Mathlib.Data.ENNReal.Basic
|
β {ΞΉ : Sort u_3} [Nonempty ΞΉ] (f : ΞΉ β NNReal), β¨
a, β(f a) = β(iInf f)
|
_private.Mathlib.Algebra.Ring.Divisibility.Lemmas.0.dvd_smul_of_dvd.match_1_1
|
Mathlib.Algebra.Ring.Divisibility.Lemmas
|
β {R : Type u_1} [inst : Semigroup R] {x y : R} (motive : x β£ y β Prop) (h : x β£ y),
(β (k : R) (hk : y = x * k), motive β―) β motive h
|
_private.Mathlib.Analysis.PSeries.0.summable_schlomilch_iff_of_nonneg._simp_1_1
|
Mathlib.Analysis.PSeries
|
β {rβ rβ : NNReal}, (βrβ β€ βrβ) = (rβ β€ rβ)
|
KaehlerDifferential.quotKerTotalEquiv._proof_2
|
Mathlib.RingTheory.Kaehler.Basic
|
β (R : Type u_2) (S : Type u_1) [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : Algebra R S],
KaehlerDifferential.kerTotal R S β€ LinearMap.ker (Finsupp.linearCombination S β(KaehlerDifferential.D R S))
|
Filter.lift_principal2
|
Mathlib.Order.Filter.Lift
|
β {Ξ± : Type u_1} {f : Filter Ξ±}, f.lift Filter.principal = f
|
Commute.pow_pow_self
|
Mathlib.Algebra.Group.Commute.Defs
|
β {M : Type u_2} [inst : Monoid M] (a : M) (m n : β), Commute (a ^ m) (a ^ n)
|
Lean.Lsp.Registration.noConfusionType
|
Lean.Data.Lsp.Client
|
Sort u β Lean.Lsp.Registration β Lean.Lsp.Registration β Sort u
|
Int.natAbs_eq_iff
|
Init.Data.Int.Order
|
β {a : β€} {n : β}, a.natAbs = n β a = βn β¨ a = -βn
|
MeasureTheory.L1.setToL1'.congr_simp
|
Mathlib.MeasureTheory.Integral.SetToL1
|
β {Ξ± : Type u_1} {E : Type u_2} {F : Type u_3} (π : Type u_6) [inst : NormedAddCommGroup E] [inst_1 : NormedSpace β E]
[inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace β F] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±}
[inst_4 : NormedRing π] [inst_5 : Module π E] [inst_6 : Module π F] [inst_7 : IsBoundedSMul π E]
[inst_8 : IsBoundedSMul π F] [inst_9 : CompleteSpace F] {T T_1 : Set Ξ± β E βL[β] F} (e_T : T = T_1) {C C_1 : β}
(e_C : C = C_1) (hT : MeasureTheory.DominatedFinMeasAdditive ΞΌ T C)
(h_smul : β (c : π) (s : Set Ξ±) (x : E), (T s) (c β’ x) = c β’ (T s) x),
MeasureTheory.L1.setToL1' π hT h_smul = MeasureTheory.L1.setToL1' π β― β―
|
MeasureTheory.lpTrimToLpMeasSubgroup._proof_1
|
Mathlib.MeasureTheory.Function.ConditionalExpectation.AEMeasurable
|
β {Ξ± : Type u_2} (F : Type u_1) (p : ENNReal) [inst : NormedAddCommGroup F] {m m0 : MeasurableSpace Ξ±}
(ΞΌ : MeasureTheory.Measure Ξ±) (hm : m β€ m0) (f : β₯(MeasureTheory.Lp F p (ΞΌ.trim hm))), MeasureTheory.MemLp (ββf) p ΞΌ
|
RootPairing.Base.cartanMatrixIn_mul_diagonal_eq
|
Mathlib.LinearAlgebra.RootSystem.CartanMatrix
|
β {ΞΉ : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [inst : CommRing R] [inst_1 : AddCommGroup M]
[inst_2 : Module R M] [inst_3 : AddCommGroup N] [inst_4 : Module R N] (S : Type u_5) [inst_5 : CommRing S]
[inst_6 : Algebra S R] {P : RootSystem ΞΉ R M N} [inst_7 : P.IsValuedIn S] (B : P.InvariantForm) (b : P.Base)
[inst_8 : DecidableEq ΞΉ],
((RootPairing.Base.cartanMatrixIn S b).map β(algebraMap S R) *
Matrix.diagonal fun i => (B.form (P.root βi)) (P.root βi)) =
2 β’ (BilinForm.toMatrix b.toWeightBasis) B.form
|
SimpleGraph.distribLattice._proof_7
|
Mathlib.Combinatorics.SimpleGraph.Basic
|
β {V : Type u_1} (a b : SimpleGraph V), a β€ SemilatticeSup.sup a b
|
CategoryTheory.prodOpEquiv._proof_3
|
Mathlib.CategoryTheory.Products.Basic
|
β (C : Type u_1) [inst : CategoryTheory.Category.{u_3, u_1} C] {D : Type u_2}
[inst_1 : CategoryTheory.Category.{u_4, u_2} D] (X : Cα΅α΅ Γ Dα΅α΅),
(match CategoryTheory.CategoryStruct.id X with
| (f, g) => Opposite.op (CategoryTheory.Prod.mkHom f.unop g.unop)) =
CategoryTheory.CategoryStruct.id
(match X with
| (X, Y) => Opposite.op (Opposite.unop X, Opposite.unop Y))
|
CategoryTheory.Abelian.Ext.covariant_sequence_exactβ'
|
Mathlib.Algebra.Homology.DerivedCategory.Ext.ExactSequences
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Abelian C]
[inst_2 : CategoryTheory.HasExt C] (X : C) {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) (nβ nβ : β)
(h : nβ + 1 = nβ),
{ Xβ := AddCommGrpCat.of (CategoryTheory.Abelian.Ext X S.Xβ nβ),
Xβ := AddCommGrpCat.of (CategoryTheory.Abelian.Ext X S.Xβ nβ),
Xβ := AddCommGrpCat.of (CategoryTheory.Abelian.Ext X S.Xβ nβ),
f := AddCommGrpCat.ofHom ((CategoryTheory.Abelian.Ext.mkβ S.g).postcomp X β―),
g := AddCommGrpCat.ofHom (hS.extClass.postcomp X h), zero := β― }.Exact
|
Bimod.RightUnitorBimod.hom_right_act_hom'
|
Mathlib.CategoryTheory.Monoidal.Bimod
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] [inst_1 : CategoryTheory.MonoidalCategory C]
[inst_2 : CategoryTheory.Limits.HasCoequalizers C] {R S : CategoryTheory.Mon C} (P : Bimod R S)
[inst_3 :
β (X : C),
CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, vβ, vβ, uβ, uβ}
(CategoryTheory.MonoidalCategory.tensorLeft X)]
[inst_4 :
β (X : C),
CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, vβ, vβ, uβ, uβ}
(CategoryTheory.MonoidalCategory.tensorRight X)],
CategoryTheory.CategoryStruct.comp (P.tensorBimod (Bimod.regular S)).actRight (Bimod.RightUnitorBimod.hom P) =
CategoryTheory.CategoryStruct.comp
(CategoryTheory.MonoidalCategoryStruct.whiskerRight (Bimod.RightUnitorBimod.hom P) S.X) P.actRight
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.