name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
Lean.Meta.Ext.isExtTheorem
|
Lean.Meta.Tactic.Ext
|
Lean.Name β Lean.CoreM Bool
|
_private.Batteries.Data.RBMap.WF.0.Batteries.RBNode.balance2.match_1.eq_3
|
Batteries.Data.RBMap.WF
|
β {Ξ± : Type u_1} (motive : Batteries.RBNode Ξ± β Ξ± β Batteries.RBNode Ξ± β Sort u_2) (a : Batteries.RBNode Ξ±) (x : Ξ±)
(b : Batteries.RBNode Ξ±)
(h_1 :
(a : Batteries.RBNode Ξ±) β
(x : Ξ±) β
(b : Batteries.RBNode Ξ±) β
(y : Ξ±) β
(c : Batteries.RBNode Ξ±) β
(z : Ξ±) β
(d : Batteries.RBNode Ξ±) β
motive a x
(Batteries.RBNode.node Batteries.RBColor.red b y
(Batteries.RBNode.node Batteries.RBColor.red c z d)))
(h_2 :
(a : Batteries.RBNode Ξ±) β
(x : Ξ±) β
(b : Batteries.RBNode Ξ±) β
(y : Ξ±) β
(c : Batteries.RBNode Ξ±) β
(z : Ξ±) β
(d : Batteries.RBNode Ξ±) β
motive a x
(Batteries.RBNode.node Batteries.RBColor.red (Batteries.RBNode.node Batteries.RBColor.red b y c) z
d))
(h_3 : (a : Batteries.RBNode Ξ±) β (x : Ξ±) β (b : Batteries.RBNode Ξ±) β motive a x b),
(β (b_1 : Batteries.RBNode Ξ±) (y : Ξ±) (c : Batteries.RBNode Ξ±) (z : Ξ±) (d : Batteries.RBNode Ξ±),
b = Batteries.RBNode.node Batteries.RBColor.red b_1 y (Batteries.RBNode.node Batteries.RBColor.red c z d) β
False) β
(β (b_1 : Batteries.RBNode Ξ±) (y : Ξ±) (c : Batteries.RBNode Ξ±) (z : Ξ±) (d : Batteries.RBNode Ξ±),
b = Batteries.RBNode.node Batteries.RBColor.red (Batteries.RBNode.node Batteries.RBColor.red b_1 y c) z d β
False) β
(match a, x, b with
| a, x, Batteries.RBNode.node Batteries.RBColor.red b y (Batteries.RBNode.node Batteries.RBColor.red c z d) =>
h_1 a x b y c z d
| a, x, Batteries.RBNode.node Batteries.RBColor.red (Batteries.RBNode.node Batteries.RBColor.red b y c) z d =>
h_2 a x b y c z d
| a, x, b => h_3 a x b) =
h_3 a x b
|
MeasureTheory.Measure.setIntegral_toReal_rnDeriv_eq_withDensity
|
Mathlib.MeasureTheory.Measure.Decomposition.RadonNikodym
|
β {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {ΞΌ Ξ½ : MeasureTheory.Measure Ξ±} [MeasureTheory.SigmaFinite ΞΌ]
[MeasureTheory.SFinite Ξ½] (s : Set Ξ±),
β« (x : Ξ±) in s, (ΞΌ.rnDeriv Ξ½ x).toReal βΞ½ = (Ξ½.withDensity (ΞΌ.rnDeriv Ξ½)).real s
|
_private.Lean.Compiler.IR.Basic.0.Lean.IR.Alt.setBody.match_1
|
Lean.Compiler.IR.Basic
|
(motive : Lean.IR.Alt β Lean.IR.FnBody β Sort u_1) β
(x : Lean.IR.Alt) β
(x_1 : Lean.IR.FnBody) β
((c : Lean.IR.CtorInfo) β (b b_1 : Lean.IR.FnBody) β motive (Lean.IR.Alt.ctor c b) b_1) β
((b b_1 : Lean.IR.FnBody) β motive (Lean.IR.Alt.default b) b_1) β motive x x_1
|
Lean.Try.Config.harder._default
|
Init.Try
|
Bool
|
Subsemigroup.comap_comap
|
Mathlib.Algebra.Group.Subsemigroup.Operations
|
β {M : Type u_1} {N : Type u_2} {P : Type u_3} [inst : Mul M] [inst_1 : Mul N] [inst_2 : Mul P] (S : Subsemigroup P)
(g : N ββ* P) (f : M ββ* N), Subsemigroup.comap f (Subsemigroup.comap g S) = Subsemigroup.comap (g.comp f) S
|
Std.TreeSet.ofList_singleton
|
Std.Data.TreeSet.Lemmas
|
β {Ξ± : Type u} {cmp : Ξ± β Ξ± β Ordering} {k : Ξ±}, Std.TreeSet.ofList [k] cmp = β
.insert k
|
CategoryTheory.ActionCategory.stabilizerIsoEnd_symm_apply
|
Mathlib.CategoryTheory.Action
|
β (M : Type u_1) [inst : Monoid M] {X : Type u} [inst_1 : MulAction M X] (x : X) (f : CategoryTheory.End β¨(), xβ©),
(CategoryTheory.ActionCategory.stabilizerIsoEnd M x).symm f = f
|
CategoryTheory.StructuredArrow.instFaithfulObjCompPost
|
Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [inst_1 : CategoryTheory.Category.{vβ, uβ} D]
{B : Type uβ} [inst_2 : CategoryTheory.Category.{vβ, uβ} B] (S : C) (F : CategoryTheory.Functor B C)
(G : CategoryTheory.Functor C D), (CategoryTheory.StructuredArrow.post S F G).Faithful
|
Lean.Meta.Simp.Diagnostics.mk.noConfusion
|
Lean.Meta.Tactic.Simp.Types
|
{P : Sort u} β
{usedThmCounter triedThmCounter : Lean.PHashMap Lean.Meta.Origin β} β
{congrThmCounter : Lean.PHashMap Lean.Name β} β
{thmsWithBadKeys : Lean.PArray Lean.Meta.SimpTheorem} β
{usedThmCounter' triedThmCounter' : Lean.PHashMap Lean.Meta.Origin β} β
{congrThmCounter' : Lean.PHashMap Lean.Name β} β
{thmsWithBadKeys' : Lean.PArray Lean.Meta.SimpTheorem} β
{ usedThmCounter := usedThmCounter, triedThmCounter := triedThmCounter,
congrThmCounter := congrThmCounter, thmsWithBadKeys := thmsWithBadKeys } =
{ usedThmCounter := usedThmCounter', triedThmCounter := triedThmCounter',
congrThmCounter := congrThmCounter', thmsWithBadKeys := thmsWithBadKeys' } β
(usedThmCounter = usedThmCounter' β
triedThmCounter = triedThmCounter' β
congrThmCounter = congrThmCounter' β thmsWithBadKeys = thmsWithBadKeys' β P) β
P
|
PresheafOfModules.wellPowered
|
Mathlib.Algebra.Category.ModuleCat.Presheaf.Generator
|
β {Cβ : Type u} [inst : CategoryTheory.SmallCategory Cβ] (Rβ : CategoryTheory.Functor Cβα΅α΅ RingCat),
CategoryTheory.WellPowered.{u, u, u + 1} (PresheafOfModules Rβ)
|
QuaternionAlgebra.mk
|
Mathlib.Algebra.Quaternion
|
{R : Type u_1} β {a b c : R} β R β R β R β R β QuaternionAlgebra R a b c
|
Lean.Lsp.CodeActionParams.mk.sizeOf_spec
|
Lean.Data.Lsp.CodeActions
|
β (toWorkDoneProgressParams : Lean.Lsp.WorkDoneProgressParams) (toPartialResultParams : Lean.Lsp.PartialResultParams)
(textDocument : Lean.Lsp.TextDocumentIdentifier) (range : Lean.Lsp.Range) (context : Lean.Lsp.CodeActionContext),
sizeOf
{ toWorkDoneProgressParams := toWorkDoneProgressParams, toPartialResultParams := toPartialResultParams,
textDocument := textDocument, range := range, context := context } =
1 + sizeOf toWorkDoneProgressParams + sizeOf toPartialResultParams + sizeOf textDocument + sizeOf range +
sizeOf context
|
_private.Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Instances.0.cfc_complex_eq_real._simp_1_1
|
Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Instances
|
β {K : Type u_1} [inst : RCLike K] {z : K}, ((starRingEnd K) z = z) = (β(RCLike.re z) = z)
|
HurwitzZeta.hurwitzEvenFEPair._proof_1
|
Mathlib.NumberTheory.LSeries.HurwitzZetaEven
|
(1 + 1).AtLeastTwo
|
CategoryTheory.Functor.descOfIsLeftKanExtension.congr_simp
|
Mathlib.CategoryTheory.Functor.KanExtension.Basic
|
β {C : Type u_1} {H : Type u_3} {D : Type u_4} [inst : CategoryTheory.Category.{v_1, u_1} C]
[inst_1 : CategoryTheory.Category.{v_3, u_3} H] [inst_2 : CategoryTheory.Category.{v_4, u_4} D]
(F' : CategoryTheory.Functor D H) {L : CategoryTheory.Functor C D} {F : CategoryTheory.Functor C H}
(Ξ± Ξ±_1 : F βΆ L.comp F') (e_Ξ± : Ξ± = Ξ±_1) [inst_3 : F'.IsLeftKanExtension Ξ±] (G : CategoryTheory.Functor D H)
(Ξ² Ξ²_1 : F βΆ L.comp G), Ξ² = Ξ²_1 β F'.descOfIsLeftKanExtension Ξ± G Ξ² = F'.descOfIsLeftKanExtension Ξ±_1 G Ξ²_1
|
Primrec.nat_bodd
|
Mathlib.Computability.Primrec
|
Primrec Nat.bodd
|
Std.Internal.IO.Async.EAsync.instMonadLiftBaseIO
|
Std.Internal.Async.Basic
|
{Ξ΅ : Type} β MonadLift BaseIO (Std.Internal.IO.Async.EAsync Ξ΅)
|
_private.Mathlib.Analysis.Analytic.Basic.0.AnalyticWithinAt.congr_set._simp_1_1
|
Mathlib.Analysis.Analytic.Basic
|
β {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] {a : Ξ±} {s : Set Ξ±}, (s β nhdsWithin a s) = True
|
NonUnitalSubsemiring.mem_iInf
|
Mathlib.RingTheory.NonUnitalSubsemiring.Basic
|
β {R : Type u} [inst : NonUnitalNonAssocSemiring R] {ΞΉ : Sort u_1} {S : ΞΉ β NonUnitalSubsemiring R} {x : R},
x β β¨
i, S i β β (i : ΞΉ), x β S i
|
DoubleCentralizer.instModule._proof_1
|
Mathlib.Analysis.CStarAlgebra.Multiplier
|
β {π : Type u_1} {A : Type u_2} [inst : NontriviallyNormedField π] [inst_1 : NonUnitalNormedRing A]
[inst_2 : NormedSpace π A] [inst_3 : SMulCommClass π A A] [inst_4 : IsScalarTower π A A] {S : Type u_3}
[inst_5 : Semiring S] [inst_6 : Module S A] [inst_7 : SMulCommClass π S A] [inst_8 : ContinuousConstSMul S A]
[inst_9 : IsScalarTower S A A] [inst_10 : SMulCommClass S A A] (_x : S) (_y : DoubleCentralizer π A),
DoubleCentralizer.toProdHom (_x β’ _y) = DoubleCentralizer.toProdHom (_x β’ _y)
|
CategoryTheory.Classifier.pullback_Ο_obj_mk_truth
|
Mathlib.CategoryTheory.Topos.Classifier
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Limits.HasPullbacks C]
(π : CategoryTheory.Classifier C) {Z X : C} (i : Z βΆ X) [inst_2 : CategoryTheory.Mono i],
(CategoryTheory.Subobject.pullback (π.Ο i)).obj π.truth_as_subobject = CategoryTheory.Subobject.mk i
|
PowerBasis.ofAdjoinEqTop_gen
|
Mathlib.RingTheory.Adjoin.PowerBasis
|
β {K : Type u_1} {S : Type u_2} [inst : Field K] [inst_1 : CommRing S] [inst_2 : Algebra K S] {x : S}
(hx : IsIntegral K x) (hx' : Algebra.adjoin K {x} = β€), (PowerBasis.ofAdjoinEqTop hx hx').gen = x
|
MulHom.mk.inj
|
Mathlib.Algebra.Group.Hom.Defs
|
β {M : Type u_10} {N : Type u_11} {inst : Mul M} {inst_1 : Mul N} {toFun : M β N}
{map_mul' : β (x y : M), toFun (x * y) = toFun x * toFun y} {toFun_1 : M β N}
{map_mul'_1 : β (x y : M), toFun_1 (x * y) = toFun_1 x * toFun_1 y},
{ toFun := toFun, map_mul' := map_mul' } = { toFun := toFun_1, map_mul' := map_mul'_1 } β toFun = toFun_1
|
MeasureTheory.AEStronglyMeasurable.pow
|
Mathlib.MeasureTheory.Function.StronglyMeasurable.AEStronglyMeasurable
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : TopologicalSpace Ξ²] {m mβ : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±}
{f : Ξ± β Ξ²} [inst_1 : Monoid Ξ²] [ContinuousMul Ξ²],
MeasureTheory.AEStronglyMeasurable f ΞΌ β β (n : β), MeasureTheory.AEStronglyMeasurable (f ^ n) ΞΌ
|
_private.Mathlib.Algebra.Group.Int.Even.0.Int.even_iff._simp_1_3
|
Mathlib.Algebra.Group.Int.Even
|
β (n : β€), n + n = 2 * n
|
ProbabilityTheory.setIntegral_compProd_univ_left
|
Mathlib.Probability.Kernel.Composition.IntegralCompProd
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} {E : Type u_4} {mΞ± : MeasurableSpace Ξ±} {mΞ² : MeasurableSpace Ξ²}
{mΞ³ : MeasurableSpace Ξ³} [inst : NormedAddCommGroup E] {a : Ξ±} {ΞΊ : ProbabilityTheory.Kernel Ξ± Ξ²}
[ProbabilityTheory.IsSFiniteKernel ΞΊ] {Ξ· : ProbabilityTheory.Kernel (Ξ± Γ Ξ²) Ξ³} [ProbabilityTheory.IsSFiniteKernel Ξ·]
[inst_3 : NormedSpace β E] (f : Ξ² Γ Ξ³ β E) {t : Set Ξ³},
MeasurableSet t β
MeasureTheory.IntegrableOn f (Set.univ ΓΛ’ t) ((ΞΊ.compProd Ξ·) a) β
β« (z : Ξ² Γ Ξ³) in Set.univ ΓΛ’ t, f z β(ΞΊ.compProd Ξ·) a = β« (x : Ξ²), β« (y : Ξ³) in t, f (x, y) βΞ· (a, x) βΞΊ a
|
Lean.Server.Test.Runner.Client.instToJsonStrictOrLazy
|
Lean.Server.Test.Runner
|
{Ξ± Ξ² : Type} β [Lean.ToJson Ξ±] β [Lean.ToJson Ξ²] β Lean.ToJson (Lean.Server.Test.Runner.Client.StrictOrLazy Ξ± Ξ²)
|
Lean.Widget.instToJsonRpcEncodablePacket._@.Lean.Widget.UserWidget.629054736._hygCtx._hyg.34
|
Lean.Widget.UserWidget
|
Lean.ToJson Lean.Widget.RpcEncodablePacketβ
|
DFinsupp.le_iff'
|
Mathlib.Data.DFinsupp.Order
|
β {ΞΉ : Type u_1} {Ξ± : ΞΉ β Type u_2} [inst : (i : ΞΉ) β AddCommMonoid (Ξ± i)] [inst_1 : (i : ΞΉ) β PartialOrder (Ξ± i)]
[β (i : ΞΉ), CanonicallyOrderedAdd (Ξ± i)] [inst_3 : DecidableEq ΞΉ] [inst_4 : (i : ΞΉ) β (x : Ξ± i) β Decidable (x β 0)]
{f g : Ξ β (i : ΞΉ), Ξ± i} {s : Finset ΞΉ}, f.support β s β (f β€ g β β i β s, f i β€ g i)
|
DirectSum.coeAlgHom._proof_2
|
Mathlib.Algebra.DirectSum.Internal
|
β {ΞΉ : Type u_3} {S : Type u_2} {R : Type u_1} [inst : AddMonoid ΞΉ] [inst_1 : CommSemiring S] [inst_2 : Semiring R]
[inst_3 : Algebra S R] (A : ΞΉ β Submodule S R) [inst_4 : SetLike.GradedMonoid A] {i j : ΞΉ} (x : β₯(A i))
(x_1 : β₯(A j)), (A (i + j)).subtype (GradedMonoid.GMul.mul x x_1) = (A (i + j)).subtype (GradedMonoid.GMul.mul x x_1)
|
_private.Mathlib.GroupTheory.CosetCover.0.Subgroup.leftCoset_cover_filter_FiniteIndex_aux.match_1_3
|
Mathlib.GroupTheory.CosetCover
|
β {G : Type u_1} [inst : Group G] {ΞΉ : Type u_2} {H : ΞΉ β Subgroup G} {s : Finset ΞΉ}
(t : (i : ΞΉ) β i β s β (H i).FiniteIndex β Finset β₯(H i)) (j : ΞΉ) (hj : j β s) (hjfi : (H j).FiniteIndex)
(motive : (t j hj hjfi).Nonempty β Prop) (x : (t j hj hjfi).Nonempty),
(β (x : β₯(H j)) (hx : x β t j hj hjfi), motive β―) β motive x
|
String.Internal._aux_Init_Data_String_Grind___macroRules_String_Internal_tacticOrder_1
|
Init.Data.String.Grind
|
Lean.Macro
|
Matrix.BlockTriangular.det_fintype
|
Mathlib.LinearAlgebra.Matrix.Block
|
β {Ξ± : Type u_1} {m : Type u_3} {R : Type v} {M : Matrix m m R} {b : m β Ξ±} [inst : CommRing R] [inst_1 : DecidableEq m]
[inst_2 : Fintype m] [inst_3 : DecidableEq Ξ±] [inst_4 : Fintype Ξ±] [inst_5 : LinearOrder Ξ±],
M.BlockTriangular b β M.det = β k, (M.toSquareBlock b k).det
|
CategoryTheory.CategoryOfElements.map._proof_3
|
Mathlib.CategoryTheory.Elements
|
β {C : Type u_3} [inst : CategoryTheory.Category.{u_2, u_3} C] {Fβ Fβ : CategoryTheory.Functor C (Type u_1)}
(Ξ± : Fβ βΆ Fβ) {X Y Z : Fβ.Elements} (f : X βΆ Y) (g : Y βΆ Z),
β¨β(CategoryTheory.CategoryStruct.comp f g), β―β© = CategoryTheory.CategoryStruct.comp β¨βf, β―β© β¨βg, β―β©
|
Subgroup.map
|
Mathlib.Algebra.Group.Subgroup.Map
|
{G : Type u_1} β [inst : Group G] β {N : Type u_5} β [inst_1 : Group N] β (G β* N) β Subgroup G β Subgroup N
|
FractionalIdeal.mem_coeIdeal_of_mem
|
Mathlib.RingTheory.FractionalIdeal.Basic
|
β {R : Type u_1} [inst : CommRing R] (S : Submonoid R) {P : Type u_2} [inst_1 : CommRing P] [inst_2 : Algebra R P]
{x : R} {I : Ideal R}, x β I β (algebraMap R P) x β βI
|
Module.annihilator_finsupp
|
Mathlib.RingTheory.Ideal.Maps
|
β {R : Type u_1} {M : Type u_2} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {ΞΉ : Type u_4}
[Nonempty ΞΉ], Module.annihilator R (ΞΉ ββ M) = Module.annihilator R M
|
Int.mul_neg_of_pos_of_neg
|
Init.Data.Int.Order
|
β {a b : β€}, 0 < a β b < 0 β a * b < 0
|
CategoryTheory.Limits.Multifork.toPiFork_Ο_app_one
|
Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {J : CategoryTheory.Limits.MulticospanShape}
{I : CategoryTheory.Limits.MulticospanIndex J C} (K : CategoryTheory.Limits.Multifork I)
{c : CategoryTheory.Limits.Fan I.left} (hc : CategoryTheory.Limits.IsLimit c) {d : CategoryTheory.Limits.Fan I.right}
(hd : CategoryTheory.Limits.IsLimit d),
(CategoryTheory.Limits.Multifork.toPiFork hc hd K).Ο.app CategoryTheory.Limits.WalkingParallelPair.one =
CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Fan.IsLimit.desc hc K.ΞΉ) (I.fstPiMapOfIsLimit c hd)
|
CategoryTheory.yonedaMon_naturality
|
Mathlib.CategoryTheory.Monoidal.Cartesian.Mon_
|
β {C : Type u_1} [inst : CategoryTheory.Category.{v, u_1} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C]
{M N X Y : C} [inst_2 : CategoryTheory.MonObj M] [inst_3 : CategoryTheory.MonObj N]
(Ξ± : CategoryTheory.yonedaMonObj M βΆ CategoryTheory.yonedaMonObj N) (f : X βΆ Y) (g : Y βΆ M),
(CategoryTheory.ConcreteCategory.hom (Ξ±.app (Opposite.op X))) (CategoryTheory.CategoryStruct.comp f g) =
CategoryTheory.CategoryStruct.comp f ((CategoryTheory.ConcreteCategory.hom (Ξ±.app (Opposite.op Y))) g)
|
CircularPreorder.mk._flat_ctor
|
Mathlib.Order.Circular
|
{Ξ± : Type u_1} β
(btw sbtw : Ξ± β Ξ± β Ξ± β Prop) β
(β (a : Ξ±), btw a a a) β
(β {a b c : Ξ±}, btw a b c β btw b c a) β
autoParam (β {a b c : Ξ±}, sbtw a b c β btw a b c β§ Β¬btw c b a)
CircularPreorder.sbtw_iff_btw_not_btw._autoParam β
(β {a b c d : Ξ±}, sbtw a b c β sbtw b d c β sbtw a d c) β CircularPreorder Ξ±
|
CategoryTheory.Limits.preservesFiniteColimits_leftOp
|
Mathlib.CategoryTheory.Limits.Preserves.Opposites
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [inst_1 : CategoryTheory.Category.{vβ, uβ} D]
(F : CategoryTheory.Functor C Dα΅α΅) [CategoryTheory.Limits.PreservesFiniteLimits F],
CategoryTheory.Limits.PreservesFiniteColimits F.leftOp
|
fintypeToFinBoolAlgOp._proof_7
|
Mathlib.Order.Category.FinBoolAlg
|
β {X Y : FintypeCat} (f : X βΆ Y), (CompleteLatticeHom.setPreimage f) β€ = β€
|
_private.Lean.Meta.Tactic.Split.0.Lean.Meta.Split.generalizeMatchDiscrs.mkNewTarget
|
Lean.Meta.Tactic.Split
|
Lean.Name β
Array Lean.Expr β
Lean.Meta.MatcherInfo β β β Array Lean.Expr β Array Lean.Expr β IO.Ref Bool β Lean.Expr β Lean.MetaM Lean.Expr
|
Std.DTreeMap.Const.get?_ofList_of_mem
|
Std.Data.DTreeMap.Lemmas
|
β {Ξ± : Type u} {cmp : Ξ± β Ξ± β Ordering} {Ξ² : Type v} [Std.TransCmp cmp] {l : List (Ξ± Γ Ξ²)} {k k' : Ξ±},
cmp k k' = Ordering.eq β
β {v : Ξ²},
List.Pairwise (fun a b => Β¬cmp a.1 b.1 = Ordering.eq) l β
(k, v) β l β Std.DTreeMap.Const.get? (Std.DTreeMap.Const.ofList l cmp) k' = some v
|
Ordinal.toNatOrdinal_min
|
Mathlib.SetTheory.Ordinal.NaturalOps
|
β (a b : Ordinal.{u_1}), Ordinal.toNatOrdinal (min a b) = min (Ordinal.toNatOrdinal a) (Ordinal.toNatOrdinal b)
|
_private.Init.Grind.Module.Envelope.0.Lean.Grind.IntModule.OfNatModule.r.match_1.splitter
|
Init.Grind.Module.Envelope
|
(Ξ± : Type u_1) β
(motive : Ξ± Γ Ξ± β Ξ± Γ Ξ± β Sort u_2) β (x x_1 : Ξ± Γ Ξ±) β ((a b c d : Ξ±) β motive (a, b) (c, d)) β motive x x_1
|
WittVector.inverseCoeff.congr_simp
|
Mathlib.RingTheory.WittVector.DiscreteValuationRing
|
β {p : β} [hp : Fact (Nat.Prime p)] {k : Type u_1} [inst : CommRing k] [inst_1 : CharP k p] (a a_1 : kΛ£),
a = a_1 β
β (A A_1 : WittVector p k),
A = A_1 β β (a_2 a_3 : β), a_2 = a_3 β WittVector.inverseCoeff a A a_2 = WittVector.inverseCoeff a_1 A_1 a_3
|
Stream'.Seq.get?_cons_succ
|
Mathlib.Data.Seq.Defs
|
β {Ξ± : Type u} (a : Ξ±) (s : Stream'.Seq Ξ±) (n : β), (Stream'.Seq.cons a s).get? (n + 1) = s.get? n
|
multilinearCurryLeftEquiv_symm_apply
|
Mathlib.LinearAlgebra.Multilinear.Curry
|
β (R : Type uR) {n : β} (M : Fin n.succ β Type v) (Mβ : Type vβ) [inst : CommSemiring R]
[inst_1 : (i : Fin n.succ) β AddCommMonoid (M i)] [inst_2 : AddCommMonoid Mβ]
[inst_3 : (i : Fin n.succ) β Module R (M i)] [inst_4 : Module R Mβ]
(f : M 0 ββ[R] MultilinearMap R (fun i => M i.succ) Mβ), (multilinearCurryLeftEquiv R M Mβ).symm f = f.uncurryLeft
|
_private.Mathlib.MeasureTheory.OuterMeasure.AE.0.MeasureTheory.union_ae_eq_right._simp_1_1
|
Mathlib.MeasureTheory.OuterMeasure.AE
|
β {Ξ± : Type u} {Ξ² : Type v} [inst : PartialOrder Ξ²] {l : Filter Ξ±} {f g : Ξ± β Ξ²}, (f =αΆ [l] g) = (f β€αΆ [l] g β§ g β€αΆ [l] f)
|
CategoryTheory.WithInitial.ofCommaObject._proof_1
|
Mathlib.CategoryTheory.WithTerminal.Basic
|
β {C : Type u_3} [inst : CategoryTheory.Category.{u_4, u_3} C] {D : Type u_2}
[inst_1 : CategoryTheory.Category.{u_1, u_2} D]
(c : CategoryTheory.Comma (CategoryTheory.Functor.const C) (CategoryTheory.Functor.id (CategoryTheory.Functor C D)))
(x y : C) (f : x βΆ y), CategoryTheory.CategoryStruct.comp (c.hom.app x) (c.right.map f) = c.hom.app y
|
CategoryTheory.Limits.asEmptyCone._proof_3
|
Mathlib.CategoryTheory.Limits.Shapes.IsTerminal
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] (X : C) β¦X_1 Y : CategoryTheory.Discrete PEmpty.{1}β¦
(f : X_1 βΆ Y),
CategoryTheory.CategoryStruct.comp (((CategoryTheory.Functor.const (CategoryTheory.Discrete PEmpty.{1})).obj X).map f)
(id (CategoryTheory.Discrete.casesOn Y fun as => β―.elim)) =
CategoryTheory.CategoryStruct.comp (id (CategoryTheory.Discrete.casesOn X_1 fun as => β―.elim))
((CategoryTheory.Functor.empty C).map f)
|
lowerClosure_mul_distrib
|
Mathlib.Algebra.Order.UpperLower
|
β {Ξ± : Type u_1} [inst : CommGroup Ξ±] [inst_1 : PartialOrder Ξ±] [inst_2 : IsOrderedMonoid Ξ±] (s t : Set Ξ±),
lowerClosure (s * t) = lowerClosure s * lowerClosure t
|
CategoryTheory.Oplax.StrongTrans.Modification.equivOplax_apply
|
Mathlib.CategoryTheory.Bicategory.Modification.Oplax
|
β {B : Type uβ} [inst : CategoryTheory.Bicategory B] {C : Type uβ} [inst_1 : CategoryTheory.Bicategory C]
{F G : CategoryTheory.OplaxFunctor B C} {Ξ· ΞΈ : F βΆ G}
(Ξ :
CategoryTheory.Oplax.OplaxTrans.Modification (CategoryTheory.Oplax.StrongTrans.toOplax Ξ·)
(CategoryTheory.Oplax.StrongTrans.toOplax ΞΈ)),
CategoryTheory.Oplax.StrongTrans.Modification.equivOplax Ξ = CategoryTheory.Oplax.StrongTrans.Modification.mkOfOplax Ξ
|
Std.Internal.List.getValueD_insertListConst_of_contains_eq_false
|
Std.Data.Internal.List.Associative
|
β {Ξ± : Type u} {Ξ² : Type v} [inst : BEq Ξ±] [PartialEquivBEq Ξ±] {l : List ((_ : Ξ±) Γ Ξ²)} {toInsert : List (Ξ± Γ Ξ²)}
{k : Ξ±} {fallback : Ξ²},
(List.map Prod.fst toInsert).contains k = false β
Std.Internal.List.getValueD k (Std.Internal.List.insertListConst l toInsert) fallback =
Std.Internal.List.getValueD k l fallback
|
Β«termβ_,_Β»
|
Init.NotationExtra
|
Lean.ParserDescr
|
TopCat.Presheaf.pullbackObjObjOfImageOpen
|
Mathlib.Topology.Sheaves.Presheaf
|
{C : Type u} β
[inst : CategoryTheory.Category.{v, u} C] β
[inst_1 : CategoryTheory.Limits.HasColimits C] β
{X Y : TopCat} β
(f : X βΆ Y) β
(β± : TopCat.Presheaf C Y) β
(U : TopologicalSpace.Opens βX) β
(H : IsOpen (β(CategoryTheory.ConcreteCategory.hom f) '' βU)) β
((TopCat.Presheaf.pullback C f).obj β±).obj (Opposite.op U) β
β±.obj (Opposite.op { carrier := β(CategoryTheory.ConcreteCategory.hom f) '' βU, is_open' := H })
|
Antitone.add_const
|
Mathlib.Algebra.Order.Monoid.Unbundled.Basic
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : Add Ξ±] [inst_1 : Preorder Ξ±] [inst_2 : Preorder Ξ²] {f : Ξ² β Ξ±} [AddRightMono Ξ±],
Antitone f β β (a : Ξ±), Antitone fun x => f x + a
|
_private.Mathlib.Algebra.Lie.Weights.Killing.0.LieAlgebra.IsKilling.mem_sl2SubalgebraOfRoot_iff.match_1_4
|
Mathlib.Algebra.Lie.Weights.Killing
|
β {K : Type u_1} {L : Type u_2} [inst : LieRing L] [inst_1 : Field K] [inst_2 : LieAlgebra K L] {e f x : L} (ce cf : K)
(motive : (β cβ cβ cβ, x = cβ β’ ce β’ e + cβ β’ cf β’ f + cβ β’ β
ce β’ e, cf β’ fβ) β Prop)
(x_1 : β cβ cβ cβ, x = cβ β’ ce β’ e + cβ β’ cf β’ f + cβ β’ β
ce β’ e, cf β’ fβ),
(β (cβ cβ cβ : K) (hx : x = cβ β’ ce β’ e + cβ β’ cf β’ f + cβ β’ β
ce β’ e, cf β’ fβ), motive β―) β motive x_1
|
CategoryTheory.Mon.instIsCommMonObj
|
Mathlib.CategoryTheory.Monoidal.Cartesian.Mon_
|
β {C : Type u_1} [inst : CategoryTheory.Category.{v, u_1} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C]
[inst_2 : CategoryTheory.BraidedCategory C] {M : CategoryTheory.Mon C} [inst_3 : CategoryTheory.IsCommMonObj M.X],
CategoryTheory.IsCommMonObj M
|
Ideal.map_ofList
|
Mathlib.RingTheory.Regular.RegularSequence
|
β {R : Type u_1} {S : Type u_2} [inst : Semiring R] [inst_1 : Semiring S] (f : R β+* S) (rs : List R),
Ideal.map f (Ideal.ofList rs) = Ideal.ofList (List.map (βf) rs)
|
Lean.Server.FileWorker.EditableDocumentCore.initSnap
|
Lean.Server.FileWorker.Utils
|
Lean.Server.FileWorker.EditableDocumentCore β Lean.Language.Lean.InitialSnapshot
|
CategoryTheory.IsCardinalFiltered.max._proof_1
|
Mathlib.CategoryTheory.Presentable.IsCardinalFiltered
|
β {ΞΊ : Cardinal.{u_1}} {K : Type u_2},
HasCardinalLT K ΞΊ β HasCardinalLT (CategoryTheory.Arrow (CategoryTheory.Discrete K)) ΞΊ
|
_private.Init.Data.String.Iterator.0.String.Pos.Raw.get?.match_1.eq_1
|
Init.Data.String.Iterator
|
β (motive : String β String.Pos.Raw β Sort u_1) (s : String) (p : String.Pos.Raw)
(h_1 : (s : String) β (p : String.Pos.Raw) β motive s p),
(match s, p with
| s, p => h_1 s p) =
h_1 s p
|
Flag.instMulActionOrderIso
|
Mathlib.Algebra.Order.Group.Action.Flag
|
{Ξ± : Type u_1} β [inst : Preorder Ξ±] β MulAction (Ξ± βo Ξ±) (Flag Ξ±)
|
ContDiff.differentiable_deriv_two
|
Mathlib.Analysis.Calculus.ContDiff.Basic
|
β {π : Type u_1} [inst : NontriviallyNormedField π] {F : Type uF} [inst_1 : NormedAddCommGroup F]
[inst_2 : NormedSpace π F] {fβ : π β F}, ContDiff π 2 fβ β Differentiable π (deriv fβ)
|
TopologicalSpace.PositiveCompacts.instOrderTopOfCompactSpaceOfNonempty._proof_2
|
Mathlib.Topology.Sets.Compacts
|
β {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] [inst_1 : CompactSpace Ξ±] [inst_2 : Nonempty Ξ±], ββ€ = ββ€
|
List.lookmap_id'
|
Mathlib.Data.List.Lookmap
|
β {Ξ± : Type u_1} (f : Ξ± β Option Ξ±), (β (a b : Ξ±), b β f a β a = b) β β (l : List Ξ±), List.lookmap f l = l
|
PosNum.testBit.eq_def
|
Mathlib.Data.Num.Lemmas
|
β (x : PosNum) (x_1 : β),
x.testBit x_1 =
match x, x_1 with
| PosNum.one, 0 => true
| PosNum.one, x => false
| a.bit0, 0 => false
| p.bit0, n.succ => p.testBit n
| a.bit1, 0 => true
| p.bit1, n.succ => p.testBit n
|
_private.Mathlib.Algebra.Divisibility.Prod.0.pi_dvd_iff._simp_1_1
|
Mathlib.Algebra.Divisibility.Prod
|
β {Ξ± : Type u_1} [inst : Semigroup Ξ±] {a b : Ξ±}, (a β£ b) = β c, b = a * c
|
CategoryTheory.Limits.BinaryBicone.inrCokernelCofork
|
Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
|
{C : Type uC} β
[inst : CategoryTheory.Category.{uC', uC} C] β
[inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] β
{X Y : C} β (c : CategoryTheory.Limits.BinaryBicone X Y) β CategoryTheory.Limits.CokernelCofork c.inr
|
Lean.Meta.Grind.EMatchTheoremConstraint.isValue.elim
|
Lean.Meta.Tactic.Grind.EMatchTheorem
|
{motive : Lean.Meta.Grind.EMatchTheoremConstraint β Sort u} β
(t : Lean.Meta.Grind.EMatchTheoremConstraint) β
t.ctorIdx = 6 β
((bvarIdx : β) β (strict : Bool) β motive (Lean.Meta.Grind.EMatchTheoremConstraint.isValue bvarIdx strict)) β
motive t
|
Matroid.fundCircuit
|
Mathlib.Combinatorics.Matroid.Circuit
|
{Ξ± : Type u_1} β Matroid Ξ± β Ξ± β Set Ξ± β Set Ξ±
|
_private.Mathlib.Tactic.FunProp.Core.0.Mathlib.Meta.FunProp.funProp._sparseCasesOn_1
|
Mathlib.Tactic.FunProp.Core
|
{motive : Lean.Expr β Sort u} β
(t : Lean.Expr) β
((declName : Lean.Name) β
(type value body : Lean.Expr) β (nondep : Bool) β motive (Lean.Expr.letE declName type value body nondep)) β
((binderName : Lean.Name) β
(binderType body : Lean.Expr) β
(binderInfo : Lean.BinderInfo) β motive (Lean.Expr.forallE binderName binderType body binderInfo)) β
((data : Lean.MData) β (expr : Lean.Expr) β motive (Lean.Expr.mdata data expr)) β
(Nat.hasNotBit 1408 t.ctorIdx β motive t) β motive t
|
MvPolynomial.renameEquiv
|
Mathlib.Algebra.MvPolynomial.Rename
|
{Ο : Type u_1} β
{Ο : Type u_2} β (R : Type u_4) β [inst : CommSemiring R] β Ο β Ο β MvPolynomial Ο R ββ[R] MvPolynomial Ο R
|
CategoryTheory.LocalizerMorphism.smallHomMap'._proof_3
|
Mathlib.CategoryTheory.Localization.SmallHom
|
β {Cβ : Type u_5} [inst : CategoryTheory.Category.{u_4, u_5} Cβ] {Wβ : CategoryTheory.MorphismProperty Cβ}
{Cβ : Type u_3} [inst_1 : CategoryTheory.Category.{u_2, u_3} Cβ] {Wβ : CategoryTheory.MorphismProperty Cβ}
(Ξ¦ : CategoryTheory.LocalizerMorphism Wβ Wβ) {Y : Cβ} {Y' : Cβ}
[CategoryTheory.Localization.HasSmallLocalizedHom Wβ Y' Y'] (eY : Ξ¦.functor.obj Y β
Y'),
CategoryTheory.Localization.HasSmallLocalizedHom Wβ (Ξ¦.functor.obj Y) Y'
|
CategoryTheory.ShortComplex.HomologyData.recOn
|
Mathlib.Algebra.Homology.ShortComplex.Homology
|
{C : Type u} β
[inst : CategoryTheory.Category.{v, u} C] β
[inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] β
{S : CategoryTheory.ShortComplex C} β
{motive : S.HomologyData β Sort u_1} β
(t : S.HomologyData) β
((left : S.LeftHomologyData) β
(right : S.RightHomologyData) β
(iso : left.H β
right.H) β
(comm :
CategoryTheory.CategoryStruct.comp left.Ο (CategoryTheory.CategoryStruct.comp iso.hom right.ΞΉ) =
CategoryTheory.CategoryStruct.comp left.i right.p) β
motive { left := left, right := right, iso := iso, comm := comm }) β
motive t
|
Std.DTreeMap.Internal.Impl.getEntry?.eq_def
|
Std.Data.DTreeMap.Internal.Model
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} [inst : Ord Ξ±] (t : Std.DTreeMap.Internal.Impl Ξ± Ξ²) (k : Ξ±),
t.getEntry? k =
match t with
| Std.DTreeMap.Internal.Impl.leaf => none
| Std.DTreeMap.Internal.Impl.inner size k' v' l r =>
match compare k k' with
| Ordering.lt => l.getEntry? k
| Ordering.gt => r.getEntry? k
| Ordering.eq => some β¨k', v'β©
|
AlgebraicGeometry.Scheme.affineOpens.eq_1
|
Mathlib.AlgebraicGeometry.Morphisms.Affine
|
β (X : AlgebraicGeometry.Scheme), X.affineOpens = {U | AlgebraicGeometry.IsAffineOpen U}
|
AddChar.zmod_char_primitive_of_eq_one_only_at_zero
|
Mathlib.NumberTheory.LegendreSymbol.AddCharacter
|
β {C : Type v} [inst : CommMonoid C] (n : β) (Ο : AddChar (ZMod n) C), (β (a : ZMod n), Ο a = 1 β a = 0) β Ο.IsPrimitive
|
quasispectrum.preimage_algebraMap
|
Mathlib.Algebra.Algebra.Spectrum.Quasispectrum
|
β (S : Type u_3) {R : Type u_4} {A : Type u_5} [inst : Semifield R] [inst_1 : Field S] [inst_2 : NonUnitalRing A]
[inst_3 : Algebra R S] [inst_4 : Module S A] [IsScalarTower S A A] [SMulCommClass S A A] [inst_7 : Module R A]
[IsScalarTower R S A] {a : A}, β(algebraMap R S) β»ΒΉ' quasispectrum S a = quasispectrum R a
|
Std.DTreeMap.Equiv.getEntryLT_eq.match_1
|
Std.Data.DTreeMap.Lemmas
|
β {Ξ± : Type u_1} {Ξ² : Ξ± β Type u_2} {cmp : Ξ± β Ξ± β Ordering} {tβ : Std.DTreeMap Ξ± Ξ² cmp} {k : Ξ±} (x : Ξ±)
(motive : x β tβ β§ cmp x k = Ordering.lt β Prop) (x_1 : x β tβ β§ cmp x k = Ordering.lt),
(β (hβ : x β tβ) (hβ : cmp x k = Ordering.lt), motive β―) β motive x_1
|
Lean.JsonRpc.RequestID._sizeOf_1
|
Lean.Data.JsonRpc
|
Lean.JsonRpc.RequestID β β
|
Mathlib.Tactic.Push.push
|
Mathlib.Tactic.Push
|
Mathlib.Tactic.Push.Config β
Option Lean.Meta.Simp.Discharge β
Mathlib.Tactic.Push.Head β Lean.Elab.Tactic.Location β optParam Bool true β Lean.Elab.Tactic.TacticM Unit
|
_private.Init.Data.Int.DivMod.Bootstrap.0.Int.ediv_zero.match_1_1
|
Init.Data.Int.DivMod.Bootstrap
|
β (motive : β€ β Prop) (x : β€), (β (a : β), motive (Int.ofNat a)) β (β (a : β), motive (Int.negSucc a)) β motive x
|
ISize.ofIntLE.congr_simp
|
Init.Data.SInt.Lemmas
|
β (i i_1 : β€) (e_i : i = i_1) (_hl : ISize.minValue.toInt β€ i) (_hr : i β€ ISize.maxValue.toInt),
ISize.ofIntLE i _hl _hr = ISize.ofIntLE i_1 β― β―
|
Lean.Compiler.LCNF.NormFVarResult.erased.sizeOf_spec
|
Lean.Compiler.LCNF.CompilerM
|
sizeOf Lean.Compiler.LCNF.NormFVarResult.erased = 1
|
SimpleGraph.lapMatrix_mulVec_eq_zero_iff_forall_reachable
|
Mathlib.Combinatorics.SimpleGraph.LapMatrix
|
β {V : Type u_1} [inst : Fintype V] (G : SimpleGraph V) [inst_1 : DecidableRel G.Adj] [inst_2 : DecidableEq V]
{x : V β β}, (SimpleGraph.lapMatrix β G).mulVec x = 0 β β (i j : V), G.Reachable i j β x i = x j
|
CategoryTheory.Monad.ForgetCreatesColimits.liftedCocone
|
Mathlib.CategoryTheory.Monad.Limits
|
{C : Type uβ} β
[inst : CategoryTheory.Category.{vβ, uβ} C] β
{T : CategoryTheory.Monad C} β
{J : Type u} β
[inst_1 : CategoryTheory.Category.{v, u} J] β
{D : CategoryTheory.Functor J T.Algebra} β
(c : CategoryTheory.Limits.Cocone (D.comp T.forget)) β
CategoryTheory.Limits.IsColimit c β
[CategoryTheory.Limits.PreservesColimit (D.comp T.forget) T.toFunctor] β
[CategoryTheory.Limits.PreservesColimit ((D.comp T.forget).comp T.toFunctor) T.toFunctor] β
CategoryTheory.Limits.Cocone D
|
sdiff_inf_distrib
|
Mathlib.Order.Heyting.Basic
|
β {Ξ± : Type u_2} [inst : GeneralizedCoheytingAlgebra Ξ±] (a b c : Ξ±), a \ (b β c) = a \ b β a \ c
|
GenContFract.first_den_eq
|
Mathlib.Algebra.ContinuedFractions.Translations
|
β {K : Type u_1} {g : GenContFract K} [inst : DivisionRing K] {gp : GenContFract.Pair K},
g.s.get? 0 = some gp β g.dens 1 = gp.b
|
orderBornology
|
Mathlib.Topology.Order.Bornology
|
{Ξ± : Type u_1} β [Lattice Ξ±] β [Nonempty Ξ±] β Bornology Ξ±
|
SimpleGraph.Walk.IsHamiltonianCycle.mk._flat_ctor
|
Mathlib.Combinatorics.SimpleGraph.Hamiltonian
|
β {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {G : SimpleGraph Ξ±} {a : Ξ±} {p : G.Walk a a},
p.edges.Nodup β p β SimpleGraph.Walk.nil β p.support.tail.Nodup β p.tail.IsHamiltonian β p.IsHamiltonianCycle
|
_private.Init.Data.Array.Erase.0.Array.exists_erase_eq.match_1_1
|
Init.Data.Array.Erase
|
β {Ξ± : Type u_1} [inst : BEq Ξ±] {a : Ξ±} {xs : Array Ξ±}
(motive :
(β a_1 ys zs,
(β b β ys, Β¬(a == b) = true) β§ (a == a_1) = true β§ xs = ys.push a_1 ++ zs β§ xs.eraseP (BEq.beq a) = ys ++ zs) β
Prop)
(x :
β a_1 ys zs,
(β b β ys, Β¬(a == b) = true) β§ (a == a_1) = true β§ xs = ys.push a_1 ++ zs β§ xs.eraseP (BEq.beq a) = ys ++ zs),
(β (w : Ξ±) (ys zs : Array Ξ±) (hβ : β b β ys, Β¬(a == b) = true) (e : (a == w) = true) (hβ : xs = ys.push w ++ zs)
(hβ : xs.eraseP (BEq.beq a) = ys ++ zs), motive β―) β
motive x
|
_private.Mathlib.CategoryTheory.Presentable.OrthogonalReflection.0.CategoryTheory.OrthogonalReflection.isIso_toSucc_iff._simp_1_1
|
Mathlib.CategoryTheory.Presentable.OrthogonalReflection
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {W : CategoryTheory.MorphismProperty C} {Z : C}
[inst_1 : CategoryTheory.Limits.HasCoproduct CategoryTheory.OrthogonalReflection.Dβ.objβ]
[inst_2 : CategoryTheory.Limits.HasCoproduct CategoryTheory.OrthogonalReflection.Dβ.objβ] {X Y : C} (f : X βΆ Y)
(hf : W f) (g : X βΆ Z) {Z_1 : C} (h : β CategoryTheory.OrthogonalReflection.Dβ.objβ βΆ Z_1),
CategoryTheory.CategoryStruct.comp f
(CategoryTheory.CategoryStruct.comp (CategoryTheory.OrthogonalReflection.Dβ.ΞΉRight f hf g) h) =
CategoryTheory.CategoryStruct.comp (CategoryTheory.OrthogonalReflection.Dβ.ΞΉLeft f hf g)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.OrthogonalReflection.Dβ.t W Z) h)
|
_private.Mathlib.NumberTheory.LSeries.RiemannZeta.0.two_mul_riemannZeta_eq_tsum_int_inv_pow_of_even._proof_1_1
|
Mathlib.NumberTheory.LSeries.RiemannZeta
|
β {k : β}, 2 β€ k β Β¬k = 0
|
Lean.Meta.Grind.EMatch.SearchState._sizeOf_1
|
Lean.Meta.Tactic.Grind.EMatch
|
Lean.Meta.Grind.EMatch.SearchState β β
|
IterateMulAct.instMeasurableSpace
|
Mathlib.MeasureTheory.MeasurableSpace.Instances
|
{Ξ± : Type u_1} β {f : Ξ± β Ξ±} β MeasurableSpace (IterateMulAct f)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.