name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
QuaternionAlgebra.Basis.k_compHom
Mathlib.Algebra.QuaternionBasis
βˆ€ {R : Type u_1} {A : Type u_2} {B : Type u_3} [inst : CommRing R] [inst_1 : Ring A] [inst_2 : Ring B] [inst_3 : Algebra R A] [inst_4 : Algebra R B] {c₁ cβ‚‚ c₃ : R} (q : QuaternionAlgebra.Basis A c₁ cβ‚‚ c₃) (F : A →ₐ[R] B), (q.compHom F).k = F q.k
Std.Tactic.BVDecide.BVExpr.bitblast.goCache._mutual._proof_53
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Expr
βˆ€ (aig : Std.Sat.AIG Std.Tactic.BVDecide.BVBit) (w w_1 n : β„•) (h : w = w_1 * n) (aig_1 : Std.Sat.AIG Std.Tactic.BVDecide.BVBit) (expr : aig_1.RefVec w_1) (haig : aig.decls.size ≀ { aig := aig_1, vec := expr }.aig.decls.size), (β†‘βŸ¨{ aig := aig_1, vec := expr }, haig⟩).aig.decls.size ≀ (Std.Tactic.BVDecide.BVExpr.bitblast.blastReplicate (β†‘βŸ¨{ aig := aig_1, vec := expr }, haig⟩).aig { w := w_1, n := n, inner := expr, h := h }).aig.decls.size
Std.Time.Month.Ordinal.january
Std.Time.Date.Unit.Month
Std.Time.Month.Ordinal
Aesop.RuleResult.ctorIdx
Aesop.Search.Expansion
Aesop.RuleResult β†’ β„•
Std.Tactic.BVDecide.BVExpr.bitblast.blastAdd._proof_4
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Add
βˆ€ {w : β„•}, βˆ€ curr < w, curr + 1 ≀ w
CategoryTheory.ShortComplex.LeftHomologyData.ofEpiOfIsIsoOfMono'._proof_4
Mathlib.Algebra.Homology.ShortComplex.LeftHomology
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] {S₁ Sβ‚‚ : CategoryTheory.ShortComplex C} (Ο† : S₁ ⟢ Sβ‚‚) (h : Sβ‚‚.LeftHomologyData) [CategoryTheory.Epi Ο†.τ₁] [inst_3 : CategoryTheory.IsIso Ο†.Ο„β‚‚] (wi : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp h.i (CategoryTheory.inv Ο†.Ο„β‚‚)) S₁.g = 0) (hi : CategoryTheory.Limits.IsLimit (CategoryTheory.Limits.KernelFork.ofΞΉ (CategoryTheory.CategoryStruct.comp h.i (CategoryTheory.inv Ο†.Ο„β‚‚)) wi)), hi.lift (CategoryTheory.Limits.KernelFork.ofΞΉ S₁.f β‹―) = CategoryTheory.CategoryStruct.comp Ο†.τ₁ h.f' β†’ βˆ€ {Z' : C} (x : h.K ⟢ Z'), CategoryTheory.CategoryStruct.comp (hi.lift (CategoryTheory.Limits.KernelFork.ofΞΉ S₁.f β‹―)) x = 0 β†’ CategoryTheory.CategoryStruct.comp h.f' x = 0
Subsemiring.instTop._proof_2
Mathlib.Algebra.Ring.Subsemiring.Defs
βˆ€ {R : Type u_1} [inst : NonAssocSemiring R], 0 ∈ ⊀.carrier
_private.Mathlib.Algebra.Module.Submodule.Lattice.0.Submodule.mem_finsetInf._simp_1_2
Mathlib.Algebra.Module.Submodule.Lattice
βˆ€ {Ξ± : Type u} {ΞΉ : Sort v} {x : Ξ±} {s : ΞΉ β†’ Set Ξ±}, (x ∈ β‹‚ i, s i) = βˆ€ (i : ΞΉ), x ∈ s i
RootPairing.Hom.comp._proof_3
Mathlib.LinearAlgebra.RootSystem.Hom
βˆ€ {ΞΉ : Type u_6} {R : Type u_4} {M : Type u_7} {N : Type u_2} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] [inst_3 : AddCommGroup N] [inst_4 : Module R N] {ι₁ : Type u_8} {M₁ : Type u_9} {N₁ : Type u_5} {ΞΉβ‚‚ : Type u_1} {Mβ‚‚ : Type u_10} {Nβ‚‚ : Type u_3} [inst_5 : AddCommGroup M₁] [inst_6 : Module R M₁] [inst_7 : AddCommGroup N₁] [inst_8 : Module R N₁] [inst_9 : AddCommGroup Mβ‚‚] [inst_10 : Module R Mβ‚‚] [inst_11 : AddCommGroup Nβ‚‚] [inst_12 : Module R Nβ‚‚] {P : RootPairing ΞΉ R M N} {P₁ : RootPairing ι₁ R M₁ N₁} {Pβ‚‚ : RootPairing ΞΉβ‚‚ R Mβ‚‚ Nβ‚‚} (g : P₁.Hom Pβ‚‚) (f : P.Hom P₁), ⇑(f.coweightMap βˆ˜β‚— g.coweightMap) ∘ ⇑Pβ‚‚.coroot = ⇑P.coroot ∘ ⇑(f.indexEquiv.trans g.indexEquiv).symm
SchwartzMap.compCLM._proof_3
Mathlib.Analysis.Distribution.SchwartzSpace
βˆ€ (k n l : β„•) (C : ℝ), 0 ≀ C β†’ βˆ€ (kg : β„•) (Cg : ℝ), 1 ≀ 1 + Cg β†’ 0 ≀ (1 + Cg) ^ (k + l * n) * ((C + 1) ^ n * ↑n.factorial * 2 ^ (kg * (k + l * n)))
CategoryTheory.MorphismProperty.precoverage_monotone
Mathlib.CategoryTheory.Sites.MorphismProperty
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{v_1, u_1} C] {P Q : CategoryTheory.MorphismProperty C}, P ≀ Q β†’ P.precoverage ≀ Q.precoverage
RingHom.formallyEtale_algebraMap
Mathlib.RingTheory.Etale.Basic
βˆ€ {R : Type u_1} {S : Type u_2} [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : Algebra R S], (algebraMap R S).FormallyEtale ↔ Algebra.FormallyEtale R S
Order.Ideal.coe_sup_eq
Mathlib.Order.Ideal
βˆ€ {P : Type u_1} [inst : DistribLattice P] {I J : Order.Ideal P}, ↑(I βŠ” J) = {x | βˆƒ i ∈ I, βˆƒ j ∈ J, x = i βŠ” j}
ContinuousMultilinearMap.smulRight_apply
Mathlib.Topology.Algebra.Module.Multilinear.Basic
βˆ€ {R : Type u} {ΞΉ : Type v} {M₁ : ΞΉ β†’ Type w₁} {Mβ‚‚ : Type wβ‚‚} [inst : CommSemiring R] [inst_1 : (i : ΞΉ) β†’ AddCommMonoid (M₁ i)] [inst_2 : AddCommMonoid Mβ‚‚] [inst_3 : (i : ΞΉ) β†’ Module R (M₁ i)] [inst_4 : Module R Mβ‚‚] [inst_5 : TopologicalSpace R] [inst_6 : (i : ΞΉ) β†’ TopologicalSpace (M₁ i)] [inst_7 : TopologicalSpace Mβ‚‚] [inst_8 : ContinuousSMul R Mβ‚‚] (f : ContinuousMultilinearMap R M₁ R) (z : Mβ‚‚) (a : (i : ΞΉ) β†’ M₁ i), (f.smulRight z) a = f a β€’ z
Int.negOnePow_two_mul_add_one
Mathlib.Algebra.Ring.NegOnePow
βˆ€ (n : β„€), (2 * n + 1).negOnePow = -1
Lean.Server.Watchdog.CallHierarchyItemData
Lean.Server.Watchdog
Type
Std.Time.FormatPart.noConfusionType
Std.Time.Format.Basic
Sort u β†’ Std.Time.FormatPart β†’ Std.Time.FormatPart β†’ Sort u
Nat.testBit_ofBits_lt
Batteries.Data.Nat.Lemmas
βˆ€ {n : β„•} (f : Fin n β†’ Bool) (i : β„•) (h : i < n), (Nat.ofBits f).testBit i = f ⟨i, h⟩
HahnSeries.leadingCoeff_abs
Mathlib.RingTheory.HahnSeries.Lex
βˆ€ {Ξ“ : Type u_1} {R : Type u_2} [inst : LinearOrder Ξ“] [inst_1 : LinearOrder R] [inst_2 : AddCommGroup R] [IsOrderedAddMonoid R] (x : Lex (HahnSeries Ξ“ R)), (ofLex |x|).leadingCoeff = |(ofLex x).leadingCoeff|
isOpenMap_sigmaMk
Mathlib.Topology.Constructions
βˆ€ {ΞΉ : Type u_5} {Οƒ : ΞΉ β†’ Type u_7} [inst : (i : ΞΉ) β†’ TopologicalSpace (Οƒ i)] {i : ΞΉ}, IsOpenMap (Sigma.mk i)
SimpleGraph.TripartiteFromTriangles.NoAccidental.mk._flat_ctor
Mathlib.Combinatorics.SimpleGraph.Triangle.Tripartite
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} {t : Finset (Ξ± Γ— Ξ² Γ— Ξ³)}, (βˆ€ ⦃a a' : α⦄ ⦃b b' : β⦄ ⦃c c' : γ⦄, (a', b, c) ∈ t β†’ (a, b', c) ∈ t β†’ (a, b, c') ∈ t β†’ a = a' ∨ b = b' ∨ c = c') β†’ SimpleGraph.TripartiteFromTriangles.NoAccidental t
Int64.right_eq_add
Init.Data.SInt.Lemmas
βˆ€ {a b : Int64}, b = a + b ↔ a = 0
Std.TreeMap.Raw.mem_union_of_left
Std.Data.TreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t₁ tβ‚‚ : Std.TreeMap.Raw Ξ± Ξ² cmp} [Std.TransCmp cmp], t₁.WF β†’ tβ‚‚.WF β†’ βˆ€ {k : Ξ±}, k ∈ t₁ β†’ k ∈ t₁ βˆͺ tβ‚‚
_private.Mathlib.Computability.TuringMachine.0.Turing.TM2.stepAux.match_1.splitter
Mathlib.Computability.TuringMachine
{K : Type u_1} β†’ {Ξ“ : K β†’ Type u_2} β†’ {Ξ› : Type u_3} β†’ {Οƒ : Type u_4} β†’ (motive : Turing.TM2.Stmt Ξ“ Ξ› Οƒ β†’ Οƒ β†’ ((k : K) β†’ List (Ξ“ k)) β†’ Sort u_5) β†’ (x : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ (x_1 : Οƒ) β†’ (x_2 : (k : K) β†’ List (Ξ“ k)) β†’ ((k : K) β†’ (f : Οƒ β†’ Ξ“ k) β†’ (q : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ (v : Οƒ) β†’ (S : (k : K) β†’ List (Ξ“ k)) β†’ motive (Turing.TM2.Stmt.push k f q) v S) β†’ ((k : K) β†’ (f : Οƒ β†’ Option (Ξ“ k) β†’ Οƒ) β†’ (q : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ (v : Οƒ) β†’ (S : (k : K) β†’ List (Ξ“ k)) β†’ motive (Turing.TM2.Stmt.peek k f q) v S) β†’ ((k : K) β†’ (f : Οƒ β†’ Option (Ξ“ k) β†’ Οƒ) β†’ (q : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ (v : Οƒ) β†’ (S : (k : K) β†’ List (Ξ“ k)) β†’ motive (Turing.TM2.Stmt.pop k f q) v S) β†’ ((a : Οƒ β†’ Οƒ) β†’ (q : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ (v : Οƒ) β†’ (S : (k : K) β†’ List (Ξ“ k)) β†’ motive (Turing.TM2.Stmt.load a q) v S) β†’ ((f : Οƒ β†’ Bool) β†’ (q₁ qβ‚‚ : Turing.TM2.Stmt Ξ“ Ξ› Οƒ) β†’ (v : Οƒ) β†’ (S : (k : K) β†’ List (Ξ“ k)) β†’ motive (Turing.TM2.Stmt.branch f q₁ qβ‚‚) v S) β†’ ((f : Οƒ β†’ Ξ›) β†’ (v : Οƒ) β†’ (S : (k : K) β†’ List (Ξ“ k)) β†’ motive (Turing.TM2.Stmt.goto f) v S) β†’ ((v : Οƒ) β†’ (S : (k : K) β†’ List (Ξ“ k)) β†’ motive Turing.TM2.Stmt.halt v S) β†’ motive x x_1 x_2
CompletelyDistribLattice.top_sdiff
Mathlib.Order.CompleteBooleanAlgebra
βˆ€ {Ξ± : Type u} [self : CompletelyDistribLattice Ξ±] (a : Ξ±), ⊀ \ a = οΏ’a
IsInvariantSubring.toMulSemiringAction._proof_1
Mathlib.Algebra.Ring.Action.Invariant
βˆ€ (M : Type u_2) {R : Type u_1} [inst : Monoid M] [inst_1 : Ring R] [inst_2 : MulSemiringAction M R] (S : Subring R) [IsInvariantSubring M S] (m : M) (x : β†₯S), m β€’ ↑x ∈ S
Lean.Widget.GetInteractiveDiagnosticsParams.mk.sizeOf_spec
Lean.Server.FileWorker.WidgetRequests
βˆ€ (lineRange? : Option Lean.Lsp.LineRange), sizeOf { lineRange? := lineRange? } = 1 + sizeOf lineRange?
Std.Net.SocketAddress
Std.Net.Addr
Type
IsClosedMap.specializingMap
Mathlib.Topology.Inseparable
βˆ€ {X : Type u_1} {Y : Type u_2} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] {f : X β†’ Y}, IsClosedMap f β†’ SpecializingMap f
CategoryTheory.ProjectiveResolution.liftHomotopyZeroSucc_comp_assoc
Mathlib.CategoryTheory.Abelian.Projective.Resolution
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Abelian C] {Y Z : C} {P : CategoryTheory.ProjectiveResolution Y} {Q : CategoryTheory.ProjectiveResolution Z} (f : P.complex ⟢ Q.complex) (n : β„•) (g : P.complex.X n ⟢ Q.complex.X (n + 1)) (g' : P.complex.X (n + 1) ⟢ Q.complex.X (n + 2)) (w : f.f (n + 1) = CategoryTheory.CategoryStruct.comp (P.complex.d (n + 1) n) g + CategoryTheory.CategoryStruct.comp g' (Q.complex.d (n + 2) (n + 1))) {Z_1 : C} (h : Q.complex.X (n + 2) ⟢ Z_1), CategoryTheory.CategoryStruct.comp (CategoryTheory.ProjectiveResolution.liftHomotopyZeroSucc f n g g' w) (CategoryTheory.CategoryStruct.comp (Q.complex.d (n + 3) (n + 2)) h) = CategoryTheory.CategoryStruct.comp (f.f (n + 2) - CategoryTheory.CategoryStruct.comp (P.complex.d (n + 2) (n + 1)) g') h
CategoryTheory.Functor.IsEventuallyConstantFrom.isIso_ΞΉ_of_isColimit'
Mathlib.CategoryTheory.Limits.Constructions.EventuallyConstant
βˆ€ {J : Type u_1} {C : Type u_2} [inst : CategoryTheory.Category.{v_1, u_1} J] [inst_1 : CategoryTheory.Category.{v_2, u_2} C] {F : CategoryTheory.Functor J C} {iβ‚€ : J}, F.IsEventuallyConstantFrom iβ‚€ β†’ βˆ€ [CategoryTheory.IsFiltered J] {c : CategoryTheory.Limits.Cocone F} (hc : CategoryTheory.Limits.IsColimit c) (j : J) (ΞΉ : iβ‚€ ⟢ j), CategoryTheory.IsIso (c.ΞΉ.app j)
_private.Lean.Syntax.0.Lean.Syntax.findStack?.go.match_3
Lean.Syntax
(motive : Option (Option Lean.Syntax.Stack) β†’ Sort u_1) β†’ (x : Option (Option Lean.Syntax.Stack)) β†’ (Unit β†’ motive none) β†’ ((a : Option Lean.Syntax.Stack) β†’ motive (some a)) β†’ motive x
PUnit.inv_eq
Mathlib.Algebra.Group.PUnit
βˆ€ (x : PUnit.{u_1 + 1}), x⁻¹ = PUnit.unit
CategoryTheory.Functor.mapCoconeβ‚‚_pt
Mathlib.CategoryTheory.Limits.Preserves.Bifunctor
βˆ€ {J₁ : Type u_1} {Jβ‚‚ : Type u_2} [inst : CategoryTheory.Category.{v_1, u_1} J₁] [inst_1 : CategoryTheory.Category.{v_2, u_2} Jβ‚‚] {C₁ : Type u_3} {Cβ‚‚ : Type u_4} {C : Type u_5} [inst_2 : CategoryTheory.Category.{v_3, u_3} C₁] [inst_3 : CategoryTheory.Category.{v_4, u_4} Cβ‚‚] [inst_4 : CategoryTheory.Category.{v_5, u_5} C] (G : CategoryTheory.Functor C₁ (CategoryTheory.Functor Cβ‚‚ C)) {K₁ : CategoryTheory.Functor J₁ C₁} {Kβ‚‚ : CategoryTheory.Functor Jβ‚‚ Cβ‚‚} (c₁ : CategoryTheory.Limits.Cocone K₁) (cβ‚‚ : CategoryTheory.Limits.Cocone Kβ‚‚), (G.mapCoconeβ‚‚ c₁ cβ‚‚).pt = (G.obj c₁.pt).obj cβ‚‚.pt
CauSeq.equiv_lim
Mathlib.Algebra.Order.CauSeq.Completion
βˆ€ {Ξ± : Type u_1} [inst : Field Ξ±] [inst_1 : LinearOrder Ξ±] [inst_2 : IsStrictOrderedRing Ξ±] {Ξ² : Type u_2} [inst_3 : Ring Ξ²] {abv : Ξ² β†’ Ξ±} [inst_4 : IsAbsoluteValue abv] [inst_5 : CauSeq.IsComplete Ξ² abv] (s : CauSeq Ξ² abv), s β‰ˆ CauSeq.const abv s.lim
MontelSpace.rec
Mathlib.Analysis.LocallyConvex.Montel
{π•œ : Type u_4} β†’ {E : Type u_5} β†’ [inst : SeminormedRing π•œ] β†’ [inst_1 : Zero E] β†’ [inst_2 : SMul π•œ E] β†’ [inst_3 : TopologicalSpace E] β†’ {motive : MontelSpace π•œ E β†’ Sort u} β†’ ((heine_borel : βˆ€ (s : Set E), IsClosed s β†’ Bornology.IsVonNBounded π•œ s β†’ IsCompact s) β†’ motive β‹―) β†’ (t : MontelSpace π•œ E) β†’ motive t
Subgroup.pi
Mathlib.Algebra.Group.Subgroup.Basic
{Ξ· : Type u_7} β†’ {f : Ξ· β†’ Type u_8} β†’ [inst : (i : Ξ·) β†’ Group (f i)] β†’ Set Ξ· β†’ ((i : Ξ·) β†’ Subgroup (f i)) β†’ Subgroup ((i : Ξ·) β†’ f i)
Set.zero_notMem_sub_iff
Mathlib.Algebra.Group.Pointwise.Set.Basic
βˆ€ {Ξ± : Type u_2} [inst : AddGroup Ξ±] {s t : Set Ξ±}, 0 βˆ‰ s - t ↔ Disjoint s t
_private.Lean.Elab.App.0.Lean.Elab.Term.ElabAppArgs.processImplicitArg
Lean.Elab.App
Lean.Name β†’ Lean.Elab.Term.ElabAppArgs.M Lean.Expr
List.Subset.antisymm_of_sortedLT
Mathlib.Data.List.Sort
βˆ€ {Ξ± : Type u_1} [inst : PartialOrder Ξ±] {l₁ lβ‚‚ : List Ξ±}, l₁ βŠ† lβ‚‚ β†’ lβ‚‚ βŠ† l₁ β†’ l₁.SortedLT β†’ lβ‚‚.SortedLT β†’ l₁ = lβ‚‚
Aesop.GoalWithMVars.recOn
Aesop.Script.GoalWithMVars
{motive : Aesop.GoalWithMVars β†’ Sort u} β†’ (t : Aesop.GoalWithMVars) β†’ ((goal : Lean.MVarId) β†’ (mvars : Std.HashSet Lean.MVarId) β†’ motive { goal := goal, mvars := mvars }) β†’ motive t
Std.ExtDTreeMap.getKey?_maxKey
Std.Data.ExtDTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.ExtDTreeMap Ξ± Ξ² cmp} [inst : Std.TransCmp cmp] {he : t β‰  βˆ…}, t.getKey? (t.maxKey he) = some (t.maxKey he)
Concept.extent_sup
Mathlib.Order.Concept
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} {r : Ξ± β†’ Ξ² β†’ Prop} (c d : Concept Ξ± Ξ² r), (c βŠ” d).extent = lowerPolar r (c.intent ∩ d.intent)
SimpleGraph.Subgraph._sizeOf_1
Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} β†’ {G : SimpleGraph V} β†’ [SizeOf V] β†’ G.Subgraph β†’ β„•
Function.Surjective.addAction._proof_1
Mathlib.Algebra.Group.Action.Defs
βˆ€ {M : Type u_2} {Ξ± : Type u_3} {Ξ² : Type u_1} [inst : AddMonoid M] [inst_1 : AddAction M Ξ±] [inst_2 : VAdd M Ξ²] (f : Ξ± β†’ Ξ²), Function.Surjective f β†’ (βˆ€ (c : M) (x : Ξ±), f (c +α΅₯ x) = c +α΅₯ f x) β†’ βˆ€ (a a_1 : M) (y : Ξ²), (a + a_1) +α΅₯ y = a +α΅₯ a_1 +α΅₯ y
_private.Lean.Compiler.IR.EmitLLVM.0.Lean.IR.EmitLLVM.emitDeclAux.match_1
Lean.Compiler.IR.EmitLLVM
(motive : Lean.IR.Decl β†’ Sort u_1) β†’ (d : Lean.IR.Decl) β†’ ((f : Lean.IR.FunId) β†’ (xs : Array Lean.IR.Param) β†’ (t : Lean.IR.IRType) β†’ (b : Lean.IR.FnBody) β†’ (info : Lean.IR.DeclInfo) β†’ motive (Lean.IR.Decl.fdecl f xs t b info)) β†’ ((x : Lean.IR.Decl) β†’ motive x) β†’ motive d
Matrix.center_eq_range
Mathlib.Data.Matrix.Basis
βˆ€ {n : Type u_3} (R : Type u_5) [inst : DecidableEq n] [inst_1 : Fintype n] [inst_2 : CommSemiring R], Set.center (Matrix n n R) = Set.range ⇑(Matrix.scalar n)
AddMonoidHom.range_eq_top_of_surjective
Mathlib.Algebra.Group.Subgroup.Ker
βˆ€ {G : Type u_1} [inst : AddGroup G] {N : Type u_7} [inst_1 : AddGroup N] (f : G β†’+ N), Function.Surjective ⇑f β†’ f.range = ⊀
Real.convergent_zero
Mathlib.NumberTheory.DiophantineApproximation.Basic
βˆ€ (ΞΎ : ℝ), ΞΎ.convergent 0 = β†‘βŒŠΞΎβŒ‹
CategoryTheory.Bicategory.conjugateIsoEquiv_apply_inv
Mathlib.CategoryTheory.Bicategory.Adjunction.Mate
βˆ€ {B : Type u} [inst : CategoryTheory.Bicategory B] {c d : B} {l₁ lβ‚‚ : c ⟢ d} {r₁ rβ‚‚ : d ⟢ c} (adj₁ : CategoryTheory.Bicategory.Adjunction l₁ r₁) (adjβ‚‚ : CategoryTheory.Bicategory.Adjunction lβ‚‚ rβ‚‚) (Ξ± : lβ‚‚ β‰… l₁), ((CategoryTheory.Bicategory.conjugateIsoEquiv adj₁ adjβ‚‚) Ξ±).inv = (CategoryTheory.Bicategory.conjugateEquiv adjβ‚‚ adj₁) Ξ±.inv
mapsTo_gaugeRescale_closure
Mathlib.Analysis.Convex.GaugeRescale
βˆ€ {E : Type u_1} [inst : AddCommGroup E] [inst_1 : Module ℝ E] [inst_2 : TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousSMul ℝ E] {s t : Set E}, Convex ℝ s β†’ s ∈ nhds 0 β†’ Convex ℝ t β†’ 0 ∈ t β†’ Absorbent ℝ t β†’ Set.MapsTo (gaugeRescale s t) (closure s) (closure t)
Std.HashMap.mem_alter_of_beq
Std.Data.HashMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.HashMap Ξ± Ξ²} [EquivBEq Ξ±] [LawfulHashable Ξ±] {k k' : Ξ±} {f : Option Ξ² β†’ Option Ξ²}, (k == k') = true β†’ (k' ∈ m.alter k f ↔ (f m[k]?).isSome = true)
Monotone.forall
Mathlib.Order.BoundedOrder.Monotone
βˆ€ {Ξ± : Type u} {Ξ² : Type v} [inst : Preorder Ξ±] {P : Ξ² β†’ Ξ± β†’ Prop}, (βˆ€ (x : Ξ²), Monotone (P x)) β†’ Monotone fun y => βˆ€ (x : Ξ²), P x y
Std.Time.Duration.mk._flat_ctor
Std.Time.Duration
(second : Std.Time.Second.Offset) β†’ (nano : Std.Time.Nanosecond.Span) β†’ second.val β‰₯ 0 ∧ ↑nano β‰₯ 0 ∨ second.val ≀ 0 ∧ ↑nano ≀ 0 β†’ Std.Time.Duration
FBinopElab.instInhabitedSRec
Mathlib.Tactic.FBinop
Inhabited FBinopElab.SRec
CategoryTheory.Meq.congr_apply
Mathlib.CategoryTheory.Sites.ConcreteSheafification
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} {D : Type w} [inst_1 : CategoryTheory.Category.{w', w} D] {FD : D β†’ D β†’ Type u_1} {CD : D β†’ Type t} [inst_2 : (X Y : D) β†’ FunLike (FD X Y) (CD X) (CD Y)] [inst_3 : CategoryTheory.ConcreteCategory D FD] {X : C} {P : CategoryTheory.Functor Cα΅’α΅– D} {S : J.Cover X} (x : CategoryTheory.Meq P S) {Y : C} {f g : Y ⟢ X} (h : f = g) (hf : (↑S).arrows f), ↑x { Y := Y, f := f, hf := hf } = ↑x { Y := Y, f := g, hf := β‹― }
Std.ExtDHashMap.get_union_of_not_mem_left
Std.Data.ExtDHashMap.Lemmas
βˆ€ {Ξ± : Type u} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {Ξ² : Ξ± β†’ Type v} {m₁ mβ‚‚ : Std.ExtDHashMap Ξ± Ξ²} [inst : LawfulBEq Ξ±] {k : Ξ±} (not_mem : k βˆ‰ m₁) {h' : k ∈ m₁ βˆͺ mβ‚‚}, (m₁ βˆͺ mβ‚‚).get k h' = mβ‚‚.get k β‹―
Lean.Meta.Grind.Arith.Linear.DiseqCnstrProof.core
Lean.Meta.Tactic.Grind.Arith.Linear.Types
Lean.Expr β†’ Lean.Expr β†’ Lean.Meta.Grind.Arith.Linear.LinExpr β†’ Lean.Meta.Grind.Arith.Linear.LinExpr β†’ Lean.Meta.Grind.Arith.Linear.DiseqCnstrProof
CategoryTheory.Bicategory.Adjunction.mk.injEq
Mathlib.CategoryTheory.Bicategory.Adjunction.Basic
βˆ€ {B : Type u} [inst : CategoryTheory.Bicategory B] {a b : B} {f : a ⟢ b} {g : b ⟢ a} (unit : CategoryTheory.CategoryStruct.id a ⟢ CategoryTheory.CategoryStruct.comp f g) (counit : CategoryTheory.CategoryStruct.comp g f ⟢ CategoryTheory.CategoryStruct.id b) (left_triangle : autoParam (CategoryTheory.Bicategory.leftZigzag unit counit = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor f).hom (CategoryTheory.Bicategory.rightUnitor f).inv) CategoryTheory.Bicategory.Adjunction.left_triangle._autoParam) (right_triangle : autoParam (CategoryTheory.Bicategory.rightZigzag unit counit = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor g).hom (CategoryTheory.Bicategory.leftUnitor g).inv) CategoryTheory.Bicategory.Adjunction.right_triangle._autoParam) (unit_1 : CategoryTheory.CategoryStruct.id a ⟢ CategoryTheory.CategoryStruct.comp f g) (counit_1 : CategoryTheory.CategoryStruct.comp g f ⟢ CategoryTheory.CategoryStruct.id b) (left_triangle_1 : autoParam (CategoryTheory.Bicategory.leftZigzag unit_1 counit_1 = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor f).hom (CategoryTheory.Bicategory.rightUnitor f).inv) CategoryTheory.Bicategory.Adjunction.left_triangle._autoParam) (right_triangle_1 : autoParam (CategoryTheory.Bicategory.rightZigzag unit_1 counit_1 = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor g).hom (CategoryTheory.Bicategory.leftUnitor g).inv) CategoryTheory.Bicategory.Adjunction.right_triangle._autoParam), ({ unit := unit, counit := counit, left_triangle := left_triangle, right_triangle := right_triangle } = { unit := unit_1, counit := counit_1, left_triangle := left_triangle_1, right_triangle := right_triangle_1 }) = (unit = unit_1 ∧ counit = counit_1)
Mathlib.Tactic.ITauto.Proof.em
Mathlib.Tactic.ITauto
Bool β†’ Lean.Name β†’ Mathlib.Tactic.ITauto.Proof
Finset.isPWO_sup
Mathlib.Order.WellFoundedSet
βˆ€ {ΞΉ : Type u_1} {Ξ± : Type u_2} [inst : Preorder Ξ±] (s : Finset ΞΉ) {f : ΞΉ β†’ Set Ξ±}, (s.sup f).IsPWO ↔ βˆ€ i ∈ s, (f i).IsPWO
Lean.NameMapExtension.find?
Batteries.Lean.NameMapAttribute
{Ξ± : Type} β†’ Lean.NameMapExtension Ξ± β†’ Lean.Environment β†’ Lean.Name β†’ Option Ξ±
_private.Lean.Meta.Tactic.Grind.Arith.Cutsat.EqCnstr.0.Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.natAbs.sizeOf_spec
Lean.Meta.Tactic.Grind.Arith.Cutsat.EqCnstr
sizeOf Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.natAbs✝ = 1
CategoryTheory.ComonObj.comul
Mathlib.CategoryTheory.Monoidal.Comon_
{C : Type u₁} β†’ {inst : CategoryTheory.Category.{v₁, u₁} C} β†’ {inst_1 : CategoryTheory.MonoidalCategory C} β†’ {X : C} β†’ [self : CategoryTheory.ComonObj X] β†’ X ⟢ CategoryTheory.MonoidalCategoryStruct.tensorObj X X
PointedCone.mem_closure
Mathlib.Analysis.Convex.Cone.Closure
βˆ€ {π•œ : Type u_1} [inst : Semiring π•œ] [inst_1 : PartialOrder π•œ] [inst_2 : IsOrderedRing π•œ] {E : Type u_2} [inst_3 : AddCommMonoid E] [inst_4 : TopologicalSpace E] [inst_5 : ContinuousAdd E] [inst_6 : Module π•œ E] [inst_7 : ContinuousConstSMul π•œ E] {K : PointedCone π•œ E} {a : E}, a ∈ K.closure ↔ a ∈ closure ↑K
Continuous.fourier_inversion
Mathlib.Analysis.Fourier.Inversion
βˆ€ {V : Type u_1} {E : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MeasurableSpace V] [inst_3 : BorelSpace V] [inst_4 : FiniteDimensional ℝ V] [inst_5 : NormedAddCommGroup E] [inst_6 : NormedSpace β„‚ E] {f : V β†’ E} [CompleteSpace E], Continuous f β†’ MeasureTheory.Integrable f MeasureTheory.volume β†’ MeasureTheory.Integrable (FourierTransform.fourier f) MeasureTheory.volume β†’ FourierTransformInv.fourierInv (FourierTransform.fourier f) = f
SeparationQuotient.instRing._proof_12
Mathlib.Topology.Algebra.SeparationQuotient.Basic
βˆ€ {R : Type u_1} [inst : TopologicalSpace R] [inst_1 : Ring R] [inst_2 : IsTopologicalRing R] (x : R), SeparationQuotient.mk (-x) = -SeparationQuotient.mk x
Prod.instBornology._proof_1
Mathlib.Topology.Bornology.Constructions
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : Bornology Ξ±] [inst_1 : Bornology Ξ²], (Bornology.cobounded Ξ±).coprod (Bornology.cobounded Ξ²) ≀ Filter.cofinite
_private.Mathlib.Combinatorics.SimpleGraph.Triangle.Removal.0.Mathlib.Meta.Positivity.evalTriangleRemovalBound.match_4
Mathlib.Combinatorics.SimpleGraph.Triangle.Removal
(Ξ± : Q(Type)) β†’ (_zΞ± : Q(Zero Β«$Ξ±Β»)) β†’ (_pΞ± : Q(PartialOrder Β«$Ξ±Β»)) β†’ (Ξ΅ : Q(ℝ)) β†’ (motive : Mathlib.Meta.Positivity.Strictness q(inferInstance) q(inferInstance) Ξ΅ β†’ Sort u_1) β†’ (__discr : Mathlib.Meta.Positivity.Strictness q(inferInstance) q(inferInstance) Ξ΅) β†’ ((hΞ΅ : Q(0 < Β«$Ρ»)) β†’ motive (Mathlib.Meta.Positivity.Strictness.positive hΞ΅)) β†’ ((x : Mathlib.Meta.Positivity.Strictness q(inferInstance) q(inferInstance) Ξ΅) β†’ motive x) β†’ motive __discr
Lean.Compiler.LCNF.instTraverseFVarArg
Lean.Compiler.LCNF.FVarUtil
Lean.Compiler.LCNF.TraverseFVar Lean.Compiler.LCNF.Arg
Nat.mem_divisors_self
Mathlib.NumberTheory.Divisors
βˆ€ (n : β„•), n β‰  0 β†’ n ∈ n.divisors
CochainComplex.mappingCone.Ξ΄_descCochain._proof_2
Mathlib.Algebra.Homology.HomotopyCategory.MappingCone
βˆ€ {n : β„€} (n' : β„€), n + 1 = n' β†’ 1 + n = n'
AlgebraicGeometry.Scheme.Cover.Over
Mathlib.AlgebraicGeometry.Cover.Over
(S : AlgebraicGeometry.Scheme) β†’ {P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} β†’ [P.IsStableUnderBaseChange] β†’ [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] β†’ {X : AlgebraicGeometry.Scheme} β†’ [X.Over S] β†’ AlgebraicGeometry.Scheme.Cover (AlgebraicGeometry.Scheme.precoverage P) X β†’ Type (max u u_1)
Ordering.swap.eq_3
Std.Data.DTreeMap.Internal.Model
Ordering.gt.swap = Ordering.lt
ValuativeRel.ValueGroupWithZero.exact
Mathlib.RingTheory.Valuation.ValuativeRel.Basic
βˆ€ {R : Type u_1} [inst : CommRing R] [inst_1 : ValuativeRel R] {x y : R} {t s : β†₯(ValuativeRel.posSubmonoid R)}, ValuativeRel.ValueGroupWithZero.mk x t = ValuativeRel.ValueGroupWithZero.mk y s β†’ x * ↑s ≀α΅₯ y * ↑t ∧ y * ↑t ≀α΅₯ x * ↑s