name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
conformalAt_id
Mathlib.Analysis.Calculus.Conformal.NormedSpace
βˆ€ {X : Type u_1} [inst : NormedAddCommGroup X] [inst_1 : NormedSpace ℝ X] (x : X), ConformalAt id x
_private.Mathlib.Tactic.TacticAnalysis.0.Mathlib.TacticAnalysis.runPass.match_5
Mathlib.Tactic.TacticAnalysis
(config : Mathlib.TacticAnalysis.ComplexConfig) β†’ (motive : Mathlib.TacticAnalysis.TriggerCondition config.ctx β†’ Sort u_1) β†’ (x : Mathlib.TacticAnalysis.TriggerCondition config.ctx) β†’ ((ctx : config.ctx) β†’ motive (Mathlib.TacticAnalysis.TriggerCondition.accept ctx)) β†’ ((x : Mathlib.TacticAnalysis.TriggerCondition config.ctx) β†’ motive x) β†’ motive x
DirectSum.GradeZero.semiring._proof_3
Mathlib.Algebra.DirectSum.Ring
βˆ€ {ΞΉ : Type u_1} [inst : DecidableEq ΞΉ] (A : ΞΉ β†’ Type u_2) [inst_1 : (i : ΞΉ) β†’ AddCommMonoid (A i)] [inst_2 : AddMonoid ΞΉ] [inst_3 : DirectSum.GSemiring A], (DirectSum.of A 0) 1 = 1
Aesop.RuleResult.isSuccessful
Aesop.Search.Expansion
Aesop.RuleResult β†’ Bool
MulChar.instMulCharClass
Mathlib.NumberTheory.MulChar.Basic
βˆ€ {R : Type u_1} [inst : CommMonoid R] {R' : Type u_2} [inst_1 : CommMonoidWithZero R'], MulCharClass (MulChar R R') R R'
Pi.seminormedRing._proof_7
Mathlib.Analysis.Normed.Ring.Lemmas
βˆ€ {ΞΉ : Type u_1} {R : ΞΉ β†’ Type u_2} [inst : (i : ΞΉ) β†’ SeminormedRing (R i)] (a : (i : ΞΉ) β†’ R i), 1 * a = a
FractionalIdeal.count._proof_2
Mathlib.RingTheory.DedekindDomain.Factorization
βˆ€ {R : Type u_1} [inst : CommRing R] (K : Type u_2) [inst_1 : Field K] [inst_2 : Algebra R K] [inst_3 : IsFractionRing R K] [inst_4 : IsDedekindDomain R] (I : FractionalIdeal (nonZeroDivisors R) K), βˆƒ aI, Classical.choose β‹― β‰  0 ∧ I = FractionalIdeal.spanSingleton (nonZeroDivisors R) ((algebraMap R K) (Classical.choose β‹―))⁻¹ * ↑aI
Nat.Ico_zero_eq_range
Mathlib.Order.Interval.Finset.Nat
Finset.Ico 0 = Finset.range
Vector.finIdxOf?
Init.Data.Vector.Basic
{Ξ± : Type u_1} β†’ {n : β„•} β†’ [BEq Ξ±] β†’ Vector Ξ± n β†’ Ξ± β†’ Option (Fin n)
_private.Mathlib.Data.WSeq.Basic.0.Stream'.WSeq.flatten.match_1.splitter
Mathlib.Data.WSeq.Basic
{Ξ± : Type u_1} β†’ (motive : Stream'.WSeq Ξ± βŠ• Computation (Stream'.WSeq Ξ±) β†’ Sort u_2) β†’ (x : Stream'.WSeq Ξ± βŠ• Computation (Stream'.WSeq Ξ±)) β†’ ((s : Stream'.WSeq Ξ±) β†’ motive (Sum.inl s)) β†’ ((c' : Computation (Stream'.WSeq Ξ±)) β†’ motive (Sum.inr c')) β†’ motive x
Batteries.RBSet.empty
Batteries.Data.RBMap.Basic
{Ξ± : Type u_1} β†’ {cmp : Ξ± β†’ Ξ± β†’ Ordering} β†’ Batteries.RBSet Ξ± cmp
_private.Mathlib.GroupTheory.MonoidLocalization.Basic.0.Submonoid.LocalizationMap.isCancelMul.match_1_2
Mathlib.GroupTheory.MonoidLocalization.Basic
βˆ€ {M : Type u_1} {N : Type u_2} [inst : CommMonoid M] {S : Submonoid M} [inst_1 : CommMonoid N] (f : S.LocalizationMap N) (n : N) (motive : (βˆƒ x, n * f ↑x.2 = f x.1) β†’ Prop) (x : βˆƒ x, n * f ↑x.2 = f x.1), (βˆ€ (ms : M Γ— β†₯S) (eq : n * f ↑ms.2 = f ms.1), motive β‹―) β†’ motive x
CategoryTheory.Limits.HasBinaryProduct
Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts
{C : Type u} β†’ [CategoryTheory.Category.{v, u} C] β†’ C β†’ C β†’ Prop
Array.isEmpty.eq_1
Init.Data.List.ToArray
βˆ€ {Ξ± : Type u} (xs : Array Ξ±), xs.isEmpty = decide (xs.size = 0)
Std.instLawfulOrderLeftLeaningMaxOfIsLinearOrderOfLawfulOrderSup
Init.Data.Order.Lemmas
βˆ€ {Ξ± : Type u} [inst : LE Ξ±] [inst_1 : Max Ξ±] [Std.IsLinearOrder Ξ±] [Std.LawfulOrderSup Ξ±], Std.LawfulOrderLeftLeaningMax Ξ±
TrivSqZeroExt.snd
Mathlib.Algebra.TrivSqZeroExt
{R : Type u} β†’ {M : Type v} β†’ TrivSqZeroExt R M β†’ M
AbsoluteValue.eq_trivial_of_isEquiv_trivial
Mathlib.Analysis.AbsoluteValue.Equivalence
βˆ€ {R : Type u_1} {S : Type u_2} [inst : Field R] [inst_1 : Semifield S] [inst_2 : LinearOrder S] [inst_3 : DecidablePred fun x => x = 0] [inst_4 : NoZeroDivisors R] [inst_5 : IsStrictOrderedRing S] {f : AbsoluteValue R S}, f.IsEquiv AbsoluteValue.trivial ↔ f = AbsoluteValue.trivial
CauSeq.equiv
Mathlib.Algebra.Order.CauSeq.Basic
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ [inst : Field Ξ±] β†’ [inst_1 : LinearOrder Ξ±] β†’ [inst_2 : IsStrictOrderedRing Ξ±] β†’ [inst_3 : Ring Ξ²] β†’ {abv : Ξ² β†’ Ξ±} β†’ [IsAbsoluteValue abv] β†’ Setoid (CauSeq Ξ² abv)
_private.Mathlib.Data.Finset.Basic.0.Finset.erase_cons_of_ne._proof_1_2
Mathlib.Data.Finset.Basic
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {a b : Ξ±} {s : Finset Ξ±} (ha : a βˆ‰ s), a β‰  b β†’ (Finset.cons a s ha).erase b = Finset.cons a (s.erase b) β‹―
IsIntegral.mem_range_algebraMap_of_minpoly_splits
Mathlib.RingTheory.Adjoin.Field
βˆ€ {R : Type u_1} {K : Type u_2} {L : Type u_3} [inst : CommRing R] [inst_1 : Field K] [inst_2 : Field L] [inst_3 : Algebra R K] {x : L} [inst_4 : Algebra R L] [inst_5 : Algebra K L] [IsScalarTower R K L], IsIntegral R x β†’ (Polynomial.map (algebraMap R K) (minpoly R x)).Splits β†’ x ∈ (algebraMap K L).range
_private.Batteries.Data.RBMap.Lemmas.0.Batteries.RBNode.balance2.match_1.splitter._sparseCasesOn_5
Batteries.Data.RBMap.Lemmas
{motive : Batteries.RBColor β†’ Sort u} β†’ (t : Batteries.RBColor) β†’ motive Batteries.RBColor.red β†’ (Nat.hasNotBit 1 t.ctorIdx β†’ motive t) β†’ motive t
NoBotOrder.casesOn
Mathlib.Order.Max
{Ξ± : Type u_3} β†’ [inst : LE Ξ±] β†’ {motive : NoBotOrder Ξ± β†’ Sort u} β†’ (t : NoBotOrder Ξ±) β†’ ((exists_not_ge : βˆ€ (a : Ξ±), βˆƒ b, Β¬a ≀ b) β†’ motive β‹―) β†’ motive t
_private.Mathlib.Analysis.BoxIntegral.Partition.Basic.0.BoxIntegral.Prepartition.injOn_setOf_mem_Icc_setOf_lower_eq._simp_1_2
Mathlib.Analysis.BoxIntegral.Partition.Basic
βˆ€ {Ξ± : Type u} {a : Ξ±} {p : Ξ± β†’ Prop}, (a ∈ {x | p x}) = p a
_private.Init.Data.Int.Gcd.0.Int.gcd_eq_natAbs_right_iff_dvd._simp_1_1
Init.Data.Int.Gcd
βˆ€ {n m : β„•}, (n.gcd m = m) = (m ∣ n)
_private.Mathlib.Analysis.InnerProductSpace.Positive.0.ContinuousLinearMap.isPositive_iff'._simp_1_1
Mathlib.Analysis.InnerProductSpace.Positive
βˆ€ {π•œ : Type u_1} {E : Type u_2} [inst : RCLike π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] [inst_3 : CompleteSpace E] {A : E β†’L[π•œ] E}, IsSelfAdjoint A = (↑A).IsSymmetric
_private.Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer.0.CategoryTheory.Limits.parallelPair.match_1.eq_2
Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer
βˆ€ (motive : CategoryTheory.Limits.WalkingParallelPair β†’ Sort u_1) (h_1 : Unit β†’ motive CategoryTheory.Limits.WalkingParallelPair.zero) (h_2 : Unit β†’ motive CategoryTheory.Limits.WalkingParallelPair.one), (match CategoryTheory.Limits.WalkingParallelPair.one with | CategoryTheory.Limits.WalkingParallelPair.zero => h_1 () | CategoryTheory.Limits.WalkingParallelPair.one => h_2 ()) = h_2 ()
Lean.Lsp.FoldingRangeKind.ctorElim
Lean.Data.Lsp.LanguageFeatures
{motive : Lean.Lsp.FoldingRangeKind β†’ Sort u} β†’ (ctorIdx : β„•) β†’ (t : Lean.Lsp.FoldingRangeKind) β†’ ctorIdx = t.ctorIdx β†’ Lean.Lsp.FoldingRangeKind.ctorElimType ctorIdx β†’ motive t
Char.reduceIsUpper._regBuiltin.Char.reduceIsUpper.declare_1._@.Lean.Meta.Tactic.Simp.BuiltinSimprocs.Char.2972409855._hygCtx._hyg.17
Lean.Meta.Tactic.Simp.BuiltinSimprocs.Char
IO Unit
Std.Internal.List.Const.getValue_alterKey_self._proof_1
Std.Data.Internal.List.Associative
βˆ€ {Ξ± : Type u_2} [inst : BEq Ξ±] {Ξ² : Type u_1} [EquivBEq Ξ±] (k : Ξ±) (f : Option Ξ² β†’ Option Ξ²) (l : List ((_ : Ξ±) Γ— Ξ²)), Std.Internal.List.DistinctKeys l β†’ Std.Internal.List.containsKey k (Std.Internal.List.Const.alterKey k f l) = true β†’ (if true = true then (f (Std.Internal.List.getValue? k l)).isSome else Std.Internal.List.containsKey k l) = true
_private.Init.Data.Array.Basic.0.Array.allDiffAux._proof_1
Init.Data.Array.Basic
βˆ€ {Ξ± : Type u_1} (as : Array Ξ±), βˆ€ i < as.size, InvImage (fun x1 x2 => x1 < x2) (fun x => as.size - x) (i + 1) i
_private.Init.Data.Range.Polymorphic.Instances.0.Std.Rxo.LawfulHasSize.of_closed._simp_6
Init.Data.Range.Polymorphic.Instances
βˆ€ {Ξ± : Type u} [inst : LE Ξ±] [inst_1 : Std.PRange.UpwardEnumerable Ξ±] [inst_2 : Std.Rxc.HasSize Ξ±] [Std.Rxc.LawfulHasSize Ξ±] {lo hi : Ξ±}, (0 < Std.Rxc.HasSize.size lo hi) = (lo ≀ hi)
CoxeterSystem.exists_reduced_word
Mathlib.GroupTheory.Coxeter.Length
βˆ€ {B : Type u_1} {W : Type u_2} [inst : Group W] {M : CoxeterMatrix B} (cs : CoxeterSystem M W) (w : W), βˆƒ Ο‰, Ο‰.length = cs.length w ∧ w = cs.wordProd Ο‰
Submodule.spanRank_toENat_eq_iInf_finset_card
Mathlib.Algebra.Module.SpanRank
βˆ€ {R : Type u_1} {M : Type u} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] (p : Submodule R M), Cardinal.toENat p.spanRank = β¨… s, ↑(↑s).card
ProofWidgets.Component.mk.sizeOf_spec
ProofWidgets.Component.Basic
βˆ€ {Props : Type} [inst : SizeOf Props] (toModule : Lean.Widget.Module) (Β«exportΒ» : String), sizeOf { toModule := toModule, Β«exportΒ» := Β«exportΒ» } = 1 + sizeOf toModule + sizeOf Β«exportΒ»
Lean.Meta.Grind.AlphaShareCommon.State.set._default
Lean.Meta.Tactic.Grind.AlphaShareCommon
Lean.PHashSet Lean.Meta.Grind.AlphaKey
Int64.ofNat_add
Init.Data.SInt.Lemmas
βˆ€ (a b : β„•), Int64.ofNat (a + b) = Int64.ofNat a + Int64.ofNat b
IsSolvable
Mathlib.GroupTheory.Solvable
(G : Type u_1) β†’ [Group G] β†’ Prop
CategoryTheory.instFullExactFunctorFunctorForget
Mathlib.CategoryTheory.Limits.ExactFunctor
βˆ€ (C : Type u₁) [inst : CategoryTheory.Category.{v₁, u₁} C] (D : Type uβ‚‚) [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D], (CategoryTheory.ExactFunctor.forget C D).Full
AddSubgroup.relIndex_eq_two_iff
Mathlib.GroupTheory.Index
βˆ€ {G : Type u_1} [inst : AddGroup G] {H K : AddSubgroup G}, H.relIndex K = 2 ↔ βˆƒ a ∈ K, βˆ€ b ∈ K, Xor' (b + a ∈ H) (b ∈ H)
ZMod.valMinAbs_natCast_eq_self._simp_1
Mathlib.Data.ZMod.ValMinAbs
βˆ€ {n a : β„•} [NeZero n], ((↑a).valMinAbs = ↑a) = (a ≀ n / 2)
AddOpposite.instNonUnitalNonAssocSemiring._proof_2
Mathlib.Algebra.Ring.Opposite
βˆ€ {R : Type u_1} [inst : NonUnitalNonAssocSemiring R] (a b c : Rᡃᡒᡖ), (a + b) * c = a * c + b * c
ModuleCon.instAddCommMagmaQuotient
Mathlib.Algebra.Module.Congruence.Defs
{S : Type u_2} β†’ (M : Type u_3) β†’ [inst : SMul S M] β†’ [inst_1 : AddCommMagma M] β†’ (c : ModuleCon S M) β†’ AddCommMagma (ModuleCon.Quotient M c)
List.diff.match_1
Batteries.Data.List.Basic
{Ξ± : Type u_1} β†’ (motive : List Ξ± β†’ List Ξ± β†’ Sort u_2) β†’ (x x_1 : List Ξ±) β†’ ((l : List Ξ±) β†’ motive l []) β†’ ((l₁ : List Ξ±) β†’ (a : Ξ±) β†’ (lβ‚‚ : List Ξ±) β†’ motive l₁ (a :: lβ‚‚)) β†’ motive x x_1
TypeVec.subtypeVal_diagSub
Mathlib.Data.TypeVec
βˆ€ {n : β„•} {Ξ± : TypeVec.{u} n}, TypeVec.comp (TypeVec.subtypeVal Ξ±.repeatEq) TypeVec.diagSub = TypeVec.prod.diag
UniformSpace.replaceTopology_eq
Mathlib.Topology.UniformSpace.Defs
βˆ€ {Ξ± : Type u_2} [i : TopologicalSpace Ξ±] (u : UniformSpace Ξ±) (h : i = u.toTopologicalSpace), u.replaceTopology h = u
Equiv.Perm.cycleOf_apply_apply_self
Mathlib.GroupTheory.Perm.Cycle.Factors
βˆ€ {Ξ± : Type u_2} (f : Equiv.Perm Ξ±) [inst : DecidableRel f.SameCycle] (x : Ξ±), (f.cycleOf x) (f x) = f (f x)
instContinuousMulULift
Mathlib.Topology.Algebra.Monoid
βˆ€ {M : Type u_3} [inst : TopologicalSpace M] [inst_1 : Mul M] [ContinuousMul M], ContinuousMul (ULift.{u, u_3} M)
Std.Iterators.Iter.forIn'_eq
Init.Data.Iterators.Lemmas.Consumers.Loop
βˆ€ {Ξ± Ξ² : Type w} [inst : Std.Iterators.Iterator Ξ± Id Ξ²] [Std.Iterators.Finite Ξ± Id] {m : Type x β†’ Type x'} [inst_2 : Monad m] [LawfulMonad m] [inst_4 : Std.Iterators.IteratorLoop Ξ± Id m] [hl : Std.Iterators.LawfulIteratorLoop Ξ± Id m] {Ξ³ : Type x} {it : Std.Iter Ξ²} {init : Ξ³} {f : (b : Ξ²) β†’ it.IsPlausibleIndirectOutput b β†’ Ξ³ β†’ m (ForInStep Ξ³)}, forIn' it init f = Std.Iterators.IterM.DefaultConsumers.forIn' (fun x x_1 f x_2 => f x_2.run) Ξ³ (fun x x_1 x_2 => True) it.toIterM init it.toIterM.IsPlausibleIndirectOutput β‹― fun out h acc => do let __do_lift ← f out β‹― acc pure ⟨__do_lift, trivial⟩
WithZero.mapAddHom_injective
Mathlib.Algebra.Group.WithOne.Basic
βˆ€ {Ξ± : Type u} {Ξ² : Type v} [inst : Add Ξ±] [inst_1 : Add Ξ²] {f : Ξ± β†’β‚™+ Ξ²}, Function.Injective ⇑f β†’ Function.Injective ⇑(WithZero.mapAddHom f)
_private.Mathlib.Data.Nat.Fib.Zeckendorf.0.Nat.zeckendorf_sum_fib._simp_1_15
Mathlib.Data.Nat.Fib.Zeckendorf
βˆ€ {Ξ± : Type u} [inst : AddZeroClass Ξ±] [inst_1 : LE Ξ±] [CanonicallyOrderedAdd Ξ±] (a : Ξ±), (0 ≀ a) = True
CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionActionOfMonoidalFunctorToEndofunctorMopIso
Mathlib.CategoryTheory.Monoidal.Action.End
{C : Type u_1} β†’ {D : Type u_2} β†’ [inst : CategoryTheory.Category.{v_1, u_1} C] β†’ [inst_1 : CategoryTheory.MonoidalCategory C] β†’ [inst_2 : CategoryTheory.Category.{v_2, u_2} D] β†’ (F : CategoryTheory.Functor C (CategoryTheory.Functor D D)α΄Ήα΅’α΅–) β†’ [inst_3 : F.Monoidal] β†’ CategoryTheory.MonoidalCategory.MonoidalLeftAction.curriedActionMop C D β‰… F
NormedRing.inverse_add_norm
Mathlib.Analysis.Normed.Ring.Units
βˆ€ {R : Type u_1} [inst : NormedRing R] [HasSummableGeomSeries R] (x : RΛ£), (fun t => Ring.inverse (↑x + t)) =O[nhds 0] fun _t => 1
nonempty_subtype
Mathlib.Logic.Nonempty
βˆ€ {Ξ± : Sort u_3} {p : Ξ± β†’ Prop}, Nonempty (Subtype p) ↔ βˆƒ a, p a
CategoryTheory.Over.pullback.congr_simp
Mathlib.CategoryTheory.Comma.Over.Pullback
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y : C} (f f_1 : X ⟢ Y) (e_f : f = f_1) [inst_1 : CategoryTheory.Limits.HasPullbacksAlong f], CategoryTheory.Over.pullback f = CategoryTheory.Over.pullback f_1
SSet.stdSimplex.instFunLikeObjOppositeSimplexCategoryMkOpFinHAddNatOfNat
Mathlib.AlgebraicTopology.SimplicialSet.StdSimplex
(n i : β„•) β†’ FunLike ((SSet.stdSimplex.obj (SimplexCategory.mk n)).obj (Opposite.op (SimplexCategory.mk i))) (Fin (i + 1)) (Fin (n + 1))
NumberField.nrRealPlaces_eq_zero_iff
Mathlib.NumberTheory.NumberField.InfinitePlace.TotallyRealComplex
βˆ€ {K : Type u_2} [inst : Field K] [inst_1 : NumberField K], NumberField.InfinitePlace.nrRealPlaces K = 0 ↔ NumberField.IsTotallyComplex K
_private.Init.Data.List.Sort.Impl.0.List.MergeSort.Internal.mergeTR.go.eq_2
Init.Data.List.Sort.Impl
βˆ€ {Ξ± : Type u_1} (le : Ξ± β†’ Ξ± β†’ Bool) (x x_1 : List Ξ±), (x = [] β†’ False) β†’ List.MergeSort.Internal.mergeTR.go✝ le x [] x_1 = x_1.reverseAux x
HasCompactMulSupport.comp_homeomorph
Mathlib.Topology.Algebra.Support
βˆ€ {X : Type u_9} {Y : Type u_10} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] {M : Type u_11} [inst_2 : One M] {f : Y β†’ M}, HasCompactMulSupport f β†’ βˆ€ (Ο† : X β‰ƒβ‚œ Y), HasCompactMulSupport (f ∘ ⇑φ)
CategoryTheory.Limits.MultispanShape._sizeOf_1
Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer
CategoryTheory.Limits.MultispanShape β†’ β„•
differentiableOn_intCast
Mathlib.Analysis.Calculus.FDeriv.Const
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {s : Set E} [inst_5 : IntCast F] (z : β„€), DifferentiableOn π•œ (↑z) s
Std.Tactic.BVDecide.LRAT.Internal.Assignment.ctorElim
Std.Tactic.BVDecide.LRAT.Internal.Assignment
{motive : Std.Tactic.BVDecide.LRAT.Internal.Assignment β†’ Sort u} β†’ (ctorIdx : β„•) β†’ (t : Std.Tactic.BVDecide.LRAT.Internal.Assignment) β†’ ctorIdx = t.ctorIdx β†’ Std.Tactic.BVDecide.LRAT.Internal.Assignment.ctorElimType ctorIdx β†’ motive t
String.valid_toSubstring
Batteries.Data.String.Lemmas
βˆ€ (s : String), s.toRawSubstring.Valid
OrderIso.setIsotypicComponents_apply
Mathlib.RingTheory.SimpleModule.Isotypic
βˆ€ {R : Type u_2} {M : Type u} [inst : Ring R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] [inst_3 : IsSemisimpleModule R M] (s : Set ↑(isotypicComponents R M)), OrderIso.setIsotypicComponents s = ⨆ c ∈ s, βŸ¨β†‘c, β‹―βŸ©
_private.Lean.Elab.MutualInductive.0.Lean.Elab.Command.addAuxRecs.match_1
Lean.Elab.MutualInductive
(motive : Option Lean.ConstantInfo β†’ Sort u_1) β†’ (x : Option Lean.ConstantInfo) β†’ ((const : Lean.ConstantInfo) β†’ motive (some const)) β†’ ((x : Option Lean.ConstantInfo) β†’ motive x) β†’ motive x
PSigma.Lex.recOn
Init.WF
βˆ€ {Ξ± : Sort u} {Ξ² : Ξ± β†’ Sort v} {r : Ξ± β†’ Ξ± β†’ Prop} {s : (a : Ξ±) β†’ Ξ² a β†’ Ξ² a β†’ Prop} {motive : (a a_1 : PSigma Ξ²) β†’ PSigma.Lex r s a a_1 β†’ Prop} {a a_1 : PSigma Ξ²} (t : PSigma.Lex r s a a_1), (βˆ€ {a₁ : Ξ±} (b₁ : Ξ² a₁) {aβ‚‚ : Ξ±} (bβ‚‚ : Ξ² aβ‚‚) (a : r a₁ aβ‚‚), motive ⟨a₁, bβ‚βŸ© ⟨aβ‚‚, bβ‚‚βŸ© β‹―) β†’ (βˆ€ (a : Ξ±) {b₁ bβ‚‚ : Ξ² a} (a_2 : s a b₁ bβ‚‚), motive ⟨a, bβ‚βŸ© ⟨a, bβ‚‚βŸ© β‹―) β†’ motive a a_1 t
finsum_eq_if
Mathlib.Algebra.BigOperators.Finprod
βˆ€ {M : Type u_2} [inst : AddCommMonoid M] {p : Prop} [inst_1 : Decidable p] {x : M}, βˆ‘αΆ  (_ : p), x = if p then x else 0
_private.Init.Grind.Ring.CommSolver.0.Lean.Grind.CommRing.instBEqPoly.beq.match_1.splitter
Init.Grind.Ring.CommSolver
(motive : Lean.Grind.CommRing.Poly β†’ Lean.Grind.CommRing.Poly β†’ Sort u_1) β†’ (x x_1 : Lean.Grind.CommRing.Poly) β†’ ((a b : β„€) β†’ motive (Lean.Grind.CommRing.Poly.num a) (Lean.Grind.CommRing.Poly.num b)) β†’ ((a : β„€) β†’ (a_1 : Lean.Grind.CommRing.Mon) β†’ (a_2 : Lean.Grind.CommRing.Poly) β†’ (b : β„€) β†’ (b_1 : Lean.Grind.CommRing.Mon) β†’ (b_2 : Lean.Grind.CommRing.Poly) β†’ motive (Lean.Grind.CommRing.Poly.add a a_1 a_2) (Lean.Grind.CommRing.Poly.add b b_1 b_2)) β†’ ((x x_2 : Lean.Grind.CommRing.Poly) β†’ (βˆ€ (a b : β„€), x = Lean.Grind.CommRing.Poly.num a β†’ x_2 = Lean.Grind.CommRing.Poly.num b β†’ False) β†’ (βˆ€ (a : β„€) (a_1 : Lean.Grind.CommRing.Mon) (a_2 : Lean.Grind.CommRing.Poly) (b : β„€) (b_1 : Lean.Grind.CommRing.Mon) (b_2 : Lean.Grind.CommRing.Poly), x = Lean.Grind.CommRing.Poly.add a a_1 a_2 β†’ x_2 = Lean.Grind.CommRing.Poly.add b b_1 b_2 β†’ False) β†’ motive x x_2) β†’ motive x x_1
Nat.recDiagAux_succ_succ
Batteries.Data.Nat.Lemmas
βˆ€ {motive : β„• β†’ β„• β†’ Sort u_1} (zero_left : (n : β„•) β†’ motive 0 n) (zero_right : (m : β„•) β†’ motive m 0) (succ_succ : (m n : β„•) β†’ motive m n β†’ motive (m + 1) (n + 1)) (m n : β„•), Nat.recDiagAux zero_left zero_right succ_succ (m + 1) (n + 1) = succ_succ m n (Nat.recDiagAux zero_left zero_right succ_succ m n)
CategoryTheory.Equivalence.changeFunctor._proof_2
Mathlib.CategoryTheory.Equivalence
βˆ€ {C : Type u_4} [inst : CategoryTheory.Category.{u_3, u_4} C] {D : Type u_2} [inst_1 : CategoryTheory.Category.{u_1, u_2} D] (e : C β‰Œ D) {G : CategoryTheory.Functor C D} (iso : e.functor β‰… G) (X : C), CategoryTheory.CategoryStruct.comp (G.map (CategoryTheory.CategoryStruct.comp (e.unitIso.hom.app X) (e.inverse.map (iso.hom.app X)))) (CategoryTheory.CategoryStruct.comp (iso.inv.app (e.inverse.obj (G.obj X))) (e.counitIso.hom.app (G.obj X))) = CategoryTheory.CategoryStruct.id (G.obj X)
CategoryTheory.PreZeroHypercover.hom_inv_hβ‚€._proof_1
Mathlib.CategoryTheory.Sites.Hypercover.Zero
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{u_3, u_1} C] {S : C} {E F : CategoryTheory.PreZeroHypercover S} (e : E β‰… F) (i : E.Iβ‚€), E.X i = E.X (e.inv.sβ‚€ (e.hom.sβ‚€ i))
_private.Mathlib.RingTheory.LittleWedderburn.0.LittleWedderburn.InductionHyp.field._proof_11
Mathlib.RingTheory.LittleWedderburn
βˆ€ {D : Type u_1} [inst : DivisionRing D] {R : Subring D} [inst_1 : Fintype D] [inst_2 : DecidableEq D] [inst_3 : DecidablePred fun x => x ∈ R] (q : β„šβ‰₯0) (a : β†₯R), DivisionRing.nnqsmul q a = ↑q * a
_private.Mathlib.CategoryTheory.Limits.Opposites.0.CategoryTheory.Limits.limitOpIsoOpColimit_hom_comp_ΞΉ._simp_1_1
Mathlib.CategoryTheory.Limits.Opposites
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y Z : C} (Ξ± : X β‰… Y) {f : X ⟢ Z} {g : Y ⟢ Z}, (CategoryTheory.CategoryStruct.comp Ξ±.hom g = f) = (g = CategoryTheory.CategoryStruct.comp Ξ±.inv f)
Lean.Elab.Command.Structure.checkValidFieldModifier
Lean.Elab.Structure
Lean.Elab.Modifiers β†’ Lean.Elab.TermElabM Unit
LipschitzWith.compLp
Mathlib.MeasureTheory.Function.LpSpace.Basic
{Ξ± : Type u_1} β†’ {E : Type u_4} β†’ {F : Type u_5} β†’ {m : MeasurableSpace Ξ±} β†’ {p : ENNReal} β†’ {ΞΌ : MeasureTheory.Measure Ξ±} β†’ [inst : NormedAddCommGroup E] β†’ [inst_1 : NormedAddCommGroup F] β†’ {g : E β†’ F} β†’ {c : NNReal} β†’ LipschitzWith c g β†’ g 0 = 0 β†’ β†₯(MeasureTheory.Lp E p ΞΌ) β†’ β†₯(MeasureTheory.Lp F p ΞΌ)
FormalMultilinearSeries.leftInv._proof_30
Mathlib.Analysis.Analytic.Inverse
βˆ€ {F : Type u_1} [inst : NormedAddCommGroup F], ContinuousAdd F
_private.Init.Data.Array.Lemmas.0.Array.range.eq_1
Init.Data.Array.Lemmas
βˆ€ (n : β„•), Array.range n = Array.ofFn fun i => ↑i
List.merge_of_le
Init.Data.List.Sort.Lemmas
βˆ€ {Ξ± : Type u_1} {le : Ξ± β†’ Ξ± β†’ Bool} {xs ys : List Ξ±}, (βˆ€ (a b : Ξ±), a ∈ xs β†’ b ∈ ys β†’ le a b = true) β†’ xs.merge ys le = xs ++ ys
Std.TreeMap.Raw.Equiv.getEntryLT?_eq
Std.Data.TreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t₁ tβ‚‚ : Std.TreeMap.Raw Ξ± Ξ² cmp} [Std.TransCmp cmp] {k : Ξ±}, t₁.WF β†’ tβ‚‚.WF β†’ t₁.Equiv tβ‚‚ β†’ t₁.getEntryLT? k = tβ‚‚.getEntryLT? k
CategoryTheory.StrictlyUnitaryLaxFunctorCore.mapβ‚‚_comp
Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
βˆ€ {B : Type u₁} [inst : CategoryTheory.Bicategory B] {C : Type uβ‚‚} [inst_1 : CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryLaxFunctorCore B C) {a b : B} {f g h : a ⟢ b} (Ξ· : f ⟢ g) (ΞΈ : g ⟢ h), self.mapβ‚‚ (CategoryTheory.CategoryStruct.comp Ξ· ΞΈ) = CategoryTheory.CategoryStruct.comp (self.mapβ‚‚ Ξ·) (self.mapβ‚‚ ΞΈ)
Lean.Parser.Tactic.quot
Lean.Parser.Term
Lean.Parser.Parser
ContinuousMultilinearMap.currySumEquiv._proof_10
Mathlib.Analysis.Normed.Module.Multilinear.Curry
βˆ€ (π•œ : Type u_1) (G' : Type u_2) [inst : NontriviallyNormedField π•œ] [inst_1 : NormedAddCommGroup G'] [inst_2 : NormedSpace π•œ G'], ContinuousConstSMul π•œ G'
Std.TreeSet.Raw.toList_roc
Std.Data.TreeSet.Raw.Slice
βˆ€ {Ξ± : Type u} (cmp : autoParam (Ξ± β†’ Ξ± β†’ Ordering) Std.TreeSet.Raw.toList_roc._auto_1) [Std.TransCmp cmp] {t : Std.TreeSet.Raw Ξ± cmp}, t.WF β†’ βˆ€ {lowerBound upperBound : Ξ±}, Std.Slice.toList (Std.Roc.Sliceable.mkSlice t lowerBound<...=upperBound) = List.filter (fun e => decide ((cmp e lowerBound).isGT = true ∧ (cmp e upperBound).isLE = true)) t.toList
contMDiffOn_zero_iff
Mathlib.Geometry.Manifold.ContMDiff.Defs
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {H : Type u_3} [inst_3 : TopologicalSpace H] {I : ModelWithCorners π•œ E H} {M : Type u_4} [inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] {E' : Type u_5} [inst_6 : NormedAddCommGroup E'] [inst_7 : NormedSpace π•œ E'] {H' : Type u_6} [inst_8 : TopologicalSpace H'] {I' : ModelWithCorners π•œ E' H'} {M' : Type u_7} [inst_9 : TopologicalSpace M'] [inst_10 : ChartedSpace H' M'] {f : M β†’ M'} {s : Set M}, ContMDiffOn I I' 0 f s ↔ ContinuousOn f s
Fintype
Mathlib.Data.Fintype.Defs
Type u_4 β†’ Type u_4
Subalgebra.val._proof_5
Mathlib.Algebra.Algebra.Subalgebra.Basic
βˆ€ {R : Type u_2} {A : Type u_1} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Algebra R A] (S : Subalgebra R A) (x : R), ↑((algebraMap R β†₯S) x) = ↑((algebraMap R β†₯S) x)
_private.Lean.PrettyPrinter.Delaborator.TopDownAnalyze.0.Lean.PrettyPrinter.Delaborator.isType2Type._sparseCasesOn_2
Lean.PrettyPrinter.Delaborator.TopDownAnalyze
{motive : Lean.Expr β†’ Sort u} β†’ (t : Lean.Expr) β†’ ((u : Lean.Level) β†’ motive (Lean.Expr.sort u)) β†’ (Nat.hasNotBit 8 t.ctorIdx β†’ motive t) β†’ motive t
Rat.instNormedField
Mathlib.Analysis.Normed.Field.Lemmas
NormedField β„š
sqrt_one_add_norm_sq_le
Mathlib.Analysis.SpecialFunctions.JapaneseBracket
βˆ€ {E : Type u_1} [inst : NormedAddCommGroup E] (x : E), √(1 + β€–xβ€– ^ 2) ≀ 1 + β€–xβ€–
instAddUInt32
Init.Data.UInt.Basic
Add UInt32
_private.Mathlib.AlgebraicGeometry.Morphisms.QuasiCompact.0.AlgebraicGeometry.instHasAffinePropertyQuasiCompactCompactSpaceCarrierCarrierCommRingCat._simp_2
Mathlib.AlgebraicGeometry.Morphisms.QuasiCompact
βˆ€ {X : Type u} [inst : TopologicalSpace X] {s : Set X}, IsCompact s = CompactSpace ↑s
div_right_injective
Mathlib.Algebra.Group.Basic
βˆ€ {G : Type u_3} [inst : Group G] {b : G}, Function.Injective fun a => b / a
_private.Init.Data.Nat.Bitwise.Lemmas.0.Nat.testBit_two_pow._proof_1_3
Init.Data.Nat.Bitwise.Lemmas
βˆ€ {n m : β„•}, m < n β†’ Β¬m ≀ n β†’ False
Prod.mk_le_mk._simp_1
Mathlib.Order.Basic
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : LE Ξ±] [inst_1 : LE Ξ²] {a₁ aβ‚‚ : Ξ±} {b₁ bβ‚‚ : Ξ²}, ((a₁, b₁) ≀ (aβ‚‚, bβ‚‚)) = (a₁ ≀ aβ‚‚ ∧ b₁ ≀ bβ‚‚)
_private.Mathlib.GroupTheory.SpecificGroups.Alternating.MaximalSubgroups.0.alternatingGroup.exists_mem_stabilizer_smul_eq._proof_1_3
Mathlib.GroupTheory.SpecificGroups.Alternating.MaximalSubgroups
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {t : Set Ξ±}, βˆ€ a ∈ t, βˆ€ b ∈ t, βˆ€ c ∈ t, βˆ€ ⦃b_1 : α⦄, b_1 ∈ t β†’ (⇑(Equiv.swap c a) ∘ ⇑(Equiv.swap a b)) b_1 ∈ t
_private.Init.Data.UInt.Lemmas.0.UInt32.ofNat_mul._simp_1_1
Init.Data.UInt.Lemmas
βˆ€ (a : β„•) (b : UInt32), (UInt32.ofNat a = b) = (a % 2 ^ 32 = b.toNat)
Lean.FileMap.lineStart
Lean.Data.Position
Lean.FileMap β†’ β„• β†’ String.Pos.Raw
SimpleGraph.isNIndepSet_iff
Mathlib.Combinatorics.SimpleGraph.Clique
βˆ€ {Ξ± : Type u_1} (G : SimpleGraph Ξ±) (n : β„•) (s : Finset Ξ±), G.IsNIndepSet n s ↔ G.IsIndepSet ↑s ∧ s.card = n
_private.Mathlib.Order.Interval.Finset.Fin.0.Fin.finsetImage_natAdd_Icc._simp_1_1
Mathlib.Order.Interval.Finset.Fin
βˆ€ {Ξ± : Type u_1} {s₁ sβ‚‚ : Finset Ξ±}, (s₁ = sβ‚‚) = (↑s₁ = ↑sβ‚‚)
CategoryTheory.Functor.LaxMonoidal.ΞΌ_whiskerRight_comp_ΞΌ_assoc
Mathlib.CategoryTheory.Monoidal.Functor
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type uβ‚‚} [inst_2 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] [inst_3 : CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) [inst_4 : F.LaxMonoidal] (X Y Z : C) {Z_1 : D} (h : F.obj (CategoryTheory.MonoidalCategoryStruct.tensorObj (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y) Z) ⟢ Z_1), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight (CategoryTheory.Functor.LaxMonoidal.ΞΌ F X Y) (F.obj Z)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.LaxMonoidal.ΞΌ F (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y) Z) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator (F.obj X) (F.obj Y) (F.obj Z)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft (F.obj X) (CategoryTheory.Functor.LaxMonoidal.ΞΌ F Y Z)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.LaxMonoidal.ΞΌ F X (CategoryTheory.MonoidalCategoryStruct.tensorObj Y Z)) (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.MonoidalCategoryStruct.associator X Y Z).inv) h)))
Nat.gcd_sub_right_right_of_dvd
Init.Data.Nat.Gcd
βˆ€ {m k : β„•} (n : β„•), k ≀ m β†’ n ∣ k β†’ n.gcd (m - k) = n.gcd m