name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Trivialization.pullback._proof_1
Mathlib.Topology.FiberBundle.Constructions
βˆ€ {B : Type u_3} {F : Type u_2} {E : B β†’ Type u_5} {B' : Type u_1} [inst : TopologicalSpace B'] [inst_1 : TopologicalSpace (Bundle.TotalSpace F E)] [inst_2 : TopologicalSpace F] [inst_3 : TopologicalSpace B] {K : Type u_4} [inst_4 : FunLike K B' B] [ContinuousMapClass K B' B] (e : Trivialization F Bundle.TotalSpace.proj) (f : K), IsOpen ((⇑f ⁻¹' e.baseSet) Γ—Λ’ Set.univ)
FundamentalGroupoid.instIsEmpty
Mathlib.AlgebraicTopology.FundamentalGroupoid.Basic
βˆ€ (X : Type u_3) [IsEmpty X], IsEmpty (FundamentalGroupoid X)
signedDist_vadd_right_swap
Mathlib.Geometry.Euclidean.SignedDist
βˆ€ {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MetricSpace P] [inst_3 : NormedAddTorsor V P] (v w : V) (p q : P), ((signedDist v) p) (w +α΅₯ q) = ((signedDist v) (-w +α΅₯ p)) q
hasFDerivAt_inv
Mathlib.Analysis.Calculus.Deriv.Inv
βˆ€ {π•œ : Type u} [inst : NontriviallyNormedField π•œ] {x : π•œ}, x β‰  0 β†’ HasFDerivAt (fun x => x⁻¹) (ContinuousLinearMap.smulRight 1 (-(x ^ 2)⁻¹)) x
DenselyOrdered.rec
Mathlib.Order.Basic
{Ξ± : Type u_5} β†’ [inst : LT Ξ±] β†’ {motive : DenselyOrdered Ξ± β†’ Sort u} β†’ ((dense : βˆ€ (a₁ aβ‚‚ : Ξ±), a₁ < aβ‚‚ β†’ βˆƒ a, a₁ < a ∧ a < aβ‚‚) β†’ motive β‹―) β†’ (t : DenselyOrdered Ξ±) β†’ motive t
Pi.orderedSMul
Mathlib.Algebra.Order.Module.OrderedSMul
βˆ€ {ΞΉ : Type u_1} {π•œ : Type u_2} [inst : Semifield π•œ] [inst_1 : PartialOrder π•œ] [IsStrictOrderedRing π•œ] [PosMulReflectLT π•œ] {M : ΞΉ β†’ Type u_6} [inst_4 : (i : ΞΉ) β†’ AddCommMonoid (M i)] [inst_5 : (i : ΞΉ) β†’ PartialOrder (M i)] [inst_6 : (i : ΞΉ) β†’ MulActionWithZero π•œ (M i)] [βˆ€ (i : ΞΉ), OrderedSMul π•œ (M i)], OrderedSMul π•œ ((i : ΞΉ) β†’ M i)
_private.Mathlib.Lean.Expr.Basic.0.Lean.Name.fromComponents.go._unsafe_rec
Mathlib.Lean.Expr.Basic
Lean.Name β†’ List Lean.Name β†’ Lean.Name
Turing.ToPartrec.Cfg.ctorIdx
Mathlib.Computability.TMConfig
Turing.ToPartrec.Cfg β†’ β„•
Nat.shiftLeft'._unsafe_rec
Mathlib.Data.Nat.Bits
Bool β†’ β„• β†’ β„• β†’ β„•
_private.Init.Data.SInt.Lemmas.0.Int64.lt_iff_le_and_ne._simp_1_2
Init.Data.SInt.Lemmas
βˆ€ {x y : Int64}, (x ≀ y) = (x.toInt ≀ y.toInt)
Mathlib.Tactic.BicategoryLike.AtomIso.mk.sizeOf_spec
Mathlib.Tactic.CategoryTheory.Coherence.Datatypes
βˆ€ (e : Lean.Expr) (src tgt : Mathlib.Tactic.BicategoryLike.Mor₁), sizeOf { e := e, src := src, tgt := tgt } = 1 + sizeOf e + sizeOf src + sizeOf tgt
CategoryTheory.Bicategory.RightLift.mk
Mathlib.CategoryTheory.Bicategory.Extension
{B : Type u} β†’ [inst : CategoryTheory.Bicategory B] β†’ {a b c : B} β†’ {f : b ⟢ a} β†’ {g : c ⟢ a} β†’ (h : c ⟢ b) β†’ (CategoryTheory.CategoryStruct.comp h f ⟢ g) β†’ CategoryTheory.Bicategory.RightLift f g
Submodule.mem_adjoint_iff
Mathlib.Analysis.InnerProductSpace.LinearPMap
βˆ€ {π•œ : Type u_1} {E : Type u_2} {F : Type u_3} [inst : RCLike π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] [inst_3 : NormedAddCommGroup F] [inst_4 : InnerProductSpace π•œ F] (g : Submodule π•œ (E Γ— F)) (x : F Γ— E), x ∈ g.adjoint ↔ βˆ€ (a : E) (b : F), (a, b) ∈ g β†’ inner π•œ b x.1 - inner π•œ a x.2 = 0
CategoryTheory.Functor.pointwiseLeftKanExtensionCompIsoOfPreserves_fac_app
Mathlib.CategoryTheory.Functor.KanExtension.Preserves
βˆ€ {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [inst : CategoryTheory.Category.{v_1, u_1} A] [inst_1 : CategoryTheory.Category.{v_2, u_2} B] [inst_2 : CategoryTheory.Category.{v_3, u_3} C] [inst_3 : CategoryTheory.Category.{v_4, u_4} D] (G : CategoryTheory.Functor B D) (F : CategoryTheory.Functor A B) (L : CategoryTheory.Functor A C) [inst_4 : G.PreservesPointwiseLeftKanExtension F L] [inst_5 : L.HasPointwiseLeftKanExtension F] (a : A), CategoryTheory.CategoryStruct.comp ((L.pointwiseLeftKanExtensionUnit (F.comp G)).app a) ((G.pointwiseLeftKanExtensionCompIsoOfPreserves F L).inv.app (L.obj a)) = G.map ((L.pointwiseLeftKanExtensionUnit F).app a)
_private.Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme.0.AlgebraicGeometry.termProj
Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme
Lean.ParserDescr
_private.Mathlib.Data.Fin.SuccPred.0.Fin.succAbove_succAbove_succAbove_predAbove._proof_1_12
Mathlib.Data.Fin.SuccPred
βˆ€ {n : β„•} (j : Fin (n + 1)) (k : Fin n), ↑k + 1 < ↑j β†’ ¬↑k < ↑j β†’ ↑k + 1 = ↑k + 1 + 1
_private.Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Basic.0.tacticEval_simp
Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Basic
Lean.ParserDescr
Stream'.WSeq.ofList_cons
Mathlib.Data.WSeq.Basic
βˆ€ {Ξ± : Type u} (a : Ξ±) (l : List Ξ±), ↑(a :: l) = Stream'.WSeq.cons a ↑l
_private.Mathlib.NumberTheory.Divisors.0.Int.mul_mem_zero_one_two_three_four_iff._simp_1_1
Mathlib.NumberTheory.Divisors
βˆ€ {x y z : β„€}, z β‰  0 β†’ (x * y = z) = ((x, y) ∈ z.divisorsAntidiag)
CompareReals.compareEquiv
Mathlib.Topology.UniformSpace.CompareReals
CompareReals.Bourbakiℝ ≃ᡀ ℝ
Lean.Options.getInPattern
Lean.Data.Options
Lean.Options β†’ Bool
StandardEtalePair.instEtaleRing
Mathlib.RingTheory.Etale.StandardEtale
βˆ€ {R : Type u_1} [inst : CommRing R] (P : StandardEtalePair R), Algebra.Etale R P.Ring
MulSemiringActionHom.map_mul'
Mathlib.GroupTheory.GroupAction.Hom
βˆ€ {M : Type u_1} [inst : Monoid M] {N : Type u_2} [inst_1 : Monoid N] {Ο† : M β†’* N} {R : Type u_10} [inst_2 : Semiring R] [inst_3 : MulSemiringAction M R] {S : Type u_12} [inst_4 : Semiring S] [inst_5 : MulSemiringAction N S] (self : R β†’β‚‘+*[Ο†] S) (x y : R), self.toFun (x * y) = self.toFun x * self.toFun y
EstimatorData.improve
Mathlib.Deprecated.Estimator
{Ξ± : Type u_1} β†’ (a : Thunk Ξ±) β†’ {Ξ΅ : Type u_3} β†’ [self : EstimatorData a Ξ΅] β†’ Ξ΅ β†’ Option Ξ΅
_private.Lean.Server.ProtocolOverview.0.Lean.Server.Overview.ProtocolExtensionKind.ctorIdx
Lean.Server.ProtocolOverview
Lean.Server.Overview.ProtocolExtensionKind✝ β†’ β„•
_private.Mathlib.Algebra.MvPolynomial.SchwartzZippel.0.MvPolynomial.schwartz_zippel_sup_sum._simp_1_5
Mathlib.Algebra.MvPolynomial.SchwartzZippel
βˆ€ (p : Prop), (p ∨ Β¬p) = True
NonUnitalStarAlgHom.mk
Mathlib.Algebra.Star.StarAlgHom
{R : Type u_1} β†’ {A : Type u_2} β†’ {B : Type u_3} β†’ [inst : Monoid R] β†’ [inst_1 : NonUnitalNonAssocSemiring A] β†’ [inst_2 : DistribMulAction R A] β†’ [inst_3 : Star A] β†’ [inst_4 : NonUnitalNonAssocSemiring B] β†’ [inst_5 : DistribMulAction R B] β†’ [inst_6 : Star B] β†’ (toNonUnitalAlgHom : A →ₙₐ[R] B) β†’ (βˆ€ (a : A), toNonUnitalAlgHom.toFun (star a) = star (toNonUnitalAlgHom.toFun a)) β†’ A →⋆ₙₐ[R] B
ContinuousOrderHom._sizeOf_inst
Mathlib.Topology.Order.Hom.Basic
(Ξ± : Type u_6) β†’ (Ξ² : Type u_7) β†’ {inst : Preorder Ξ±} β†’ {inst_1 : Preorder Ξ²} β†’ {inst_2 : TopologicalSpace Ξ±} β†’ {inst_3 : TopologicalSpace Ξ²} β†’ [SizeOf Ξ±] β†’ [SizeOf Ξ²] β†’ SizeOf (Ξ± β†’Co Ξ²)
Std.DTreeMap.isEmpty_toList
Std.Data.DTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.DTreeMap Ξ± Ξ² cmp}, t.toList.isEmpty = t.isEmpty
_private.Mathlib.Data.Int.Init.0.Int.le_induction_down._proof_1_3
Mathlib.Data.Int.Init
βˆ€ {m : β„€} {motive : (n : β„€) β†’ n ≀ m β†’ Prop} (k : β„€), m ≀ k β†’ βˆ€ (hle' : k + 1 ≀ m), motive (k + 1) hle'
_private.Mathlib.Combinatorics.SimpleGraph.Triangle.Tripartite.0.SimpleGraph.TripartiteFromTriangles.toTriangle._simp_5
Mathlib.Combinatorics.SimpleGraph.Triangle.Tripartite
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {s : Finset Ξ±} {a b : Ξ±}, (a ∈ insert b s) = (a = b ∨ a ∈ s)
Real.geom_mean_le_arith_mean3_weighted
Mathlib.Analysis.MeanInequalities
βˆ€ {w₁ wβ‚‚ w₃ p₁ pβ‚‚ p₃ : ℝ}, 0 ≀ w₁ β†’ 0 ≀ wβ‚‚ β†’ 0 ≀ w₃ β†’ 0 ≀ p₁ β†’ 0 ≀ pβ‚‚ β†’ 0 ≀ p₃ β†’ w₁ + wβ‚‚ + w₃ = 1 β†’ p₁ ^ w₁ * pβ‚‚ ^ wβ‚‚ * p₃ ^ w₃ ≀ w₁ * p₁ + wβ‚‚ * pβ‚‚ + w₃ * p₃
AddMonCat.HasLimits.limitConeIsLimit._proof_5
Mathlib.Algebra.Category.MonCat.Limits
βˆ€ {J : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} J] (F : CategoryTheory.Functor J AddMonCat) (s : CategoryTheory.Limits.Cone F) (x y : ↑s.1) {j j' : J} (f : j ⟢ j'), CategoryTheory.CategoryStruct.comp (((CategoryTheory.forget AddMonCat).mapCone s).Ο€.app j) ((F.comp (CategoryTheory.forget AddMonCat)).map f) (x + y) = ((CategoryTheory.forget AddMonCat).mapCone s).Ο€.app j' (x + y)
AddMonoidHom.mulOp._proof_4
Mathlib.Algebra.Group.Equiv.Opposite
βˆ€ {M : Type u_1} {N : Type u_2} [inst : AddZeroClass M] [inst_1 : AddZeroClass N] (f : M β†’+ N) (x y : Mᡐᡒᡖ), (MulOpposite.op ∘ ⇑f ∘ MulOpposite.unop) (x + y) = (MulOpposite.op ∘ ⇑f ∘ MulOpposite.unop) x + (MulOpposite.op ∘ ⇑f ∘ MulOpposite.unop) y
CategoryTheory.comp_eqToHom_iff
Mathlib.CategoryTheory.EqToHom
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {X Y Y' : C} (p : Y = Y') (f : X ⟢ Y) (g : X ⟢ Y'), CategoryTheory.CategoryStruct.comp f (CategoryTheory.eqToHom p) = g ↔ f = CategoryTheory.CategoryStruct.comp g (CategoryTheory.eqToHom β‹―)
_private.Init.Data.Format.Basic.0.Std.Format.SpaceResult.foundLine
Init.Data.Format.Basic
Std.Format.SpaceResult✝ β†’ Bool
Ordinal.isNormal_veblen_zero
Mathlib.SetTheory.Ordinal.Veblen
Ordinal.IsNormal fun x => Ordinal.veblen x 0
instContinuousSMulTangentSpace
Mathlib.Geometry.Manifold.IsManifold.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {H : Type u_3} [inst_3 : TopologicalSpace H] (I : ModelWithCorners π•œ E H) {M : Type u_4} [inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] (_x : M), ContinuousSMul π•œ (TangentSpace I _x)
Cardinal.lift_sSup
Mathlib.SetTheory.Cardinal.Basic
βˆ€ {s : Set Cardinal.{u_1}}, BddAbove s β†’ Cardinal.lift.{u, u_1} (sSup s) = sSup (Cardinal.lift.{u, u_1} '' s)
_private.Mathlib.Order.ModularLattice.0.strictMono_inf_prod_sup.match_1_1
Mathlib.Order.ModularLattice
βˆ€ {Ξ± : Type u_1} [inst : Lattice Ξ±] {z : Ξ±} (_x _y : Ξ±) (motive : (fun x => (x βŠ“ z, x βŠ” z)) _y ≀ (fun x => (x βŠ“ z, x βŠ” z)) _x β†’ Prop) (x : (fun x => (x βŠ“ z, x βŠ” z)) _y ≀ (fun x => (x βŠ“ z, x βŠ” z)) _x), (βˆ€ (inf_le : ((fun x => (x βŠ“ z, x βŠ” z)) _y).1 ≀ ((fun x => (x βŠ“ z, x βŠ” z)) _x).1) (sup_le : ((fun x => (x βŠ“ z, x βŠ” z)) _y).2 ≀ ((fun x => (x βŠ“ z, x βŠ” z)) _x).2), motive β‹―) β†’ motive x
Lean.Parser.Term.letOpts.formatter
Lean.Parser.Term
Lean.PrettyPrinter.Formatter
_private.Mathlib.RingTheory.AdicCompletion.Exactness.0.AdicCompletion.mapPreimage
Mathlib.RingTheory.AdicCompletion.Exactness
{R : Type u} β†’ [inst : CommRing R] β†’ {I : Ideal R} β†’ {M : Type v} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ {N : Type w} β†’ [inst_3 : AddCommGroup N] β†’ [inst_4 : Module R N] β†’ {f : M β†’β‚—[R] N} β†’ Function.Surjective ⇑f β†’ (x : AdicCompletion.AdicCauchySequence I N) β†’ (n : β„•) β†’ ↑(⇑f ⁻¹' {↑x n})
CategoryTheory.Cat.equivOfIso._proof_3
Mathlib.CategoryTheory.Category.Cat
βˆ€ {C D : CategoryTheory.Cat} (Ξ³ : C β‰… D), Ξ³.inv.toFunctor.comp Ξ³.hom.toFunctor = CategoryTheory.Functor.id ↑D
Finsupp.subtypeDomain_sub
Mathlib.Data.Finsupp.Basic
βˆ€ {Ξ± : Type u_1} {G : Type u_8} [inst : AddGroup G] {p : Ξ± β†’ Prop} {v v' : Ξ± β†’β‚€ G}, Finsupp.subtypeDomain p (v - v') = Finsupp.subtypeDomain p v - Finsupp.subtypeDomain p v'
Std.HashMap.Raw.WF.filterMap
Std.Data.HashMap.AdditionalOperations
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {Ξ³ : Type w} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {m : Std.HashMap.Raw Ξ± Ξ²} {f : Ξ± β†’ Ξ² β†’ Option Ξ³}, m.WF β†’ (Std.HashMap.Raw.filterMap f m).WF
Std.TreeMap.getKey_minKey!
Std.Data.TreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeMap Ξ± Ξ² cmp} [Std.TransCmp cmp] [inst : Inhabited Ξ±] {hc : t.minKey! ∈ t}, t.getKey t.minKey! hc = t.minKey!
_private.Lean.Elab.Do.Basic.0.Lean.Elab.Do.bindMutVarsFromTuple.go._sunfold
Lean.Elab.Do.Basic
Lean.Elab.Do.DoElabM Lean.Expr β†’ List Lean.Name β†’ Lean.FVarId β†’ Lean.Expr β†’ Array Lean.Expr β†’ Lean.Elab.Do.DoElabM Lean.Expr
MonoidHom.toOneHom_coe
Mathlib.Algebra.Group.Hom.Defs
βˆ€ {M : Type u_4} {N : Type u_5} [inst : MulOne M] [inst_1 : MulOne N] (f : M β†’* N), ⇑↑f = ⇑f
IsAddUnit.add_right_cancel
Mathlib.Algebra.Group.Units.Basic
βˆ€ {M : Type u_1} [inst : AddMonoid M] {a b c : M}, IsAddUnit b β†’ a + b = c + b β†’ a = c
_private.Batteries.Data.MLList.Basic.0.MLList.ofArray.go._unsafe_rec
Batteries.Data.MLList.Basic
{m : Type β†’ Type} β†’ {Ξ± : Type} β†’ Array Ξ± β†’ β„• β†’ MLList m Ξ±
OrderDual.ofDual_le_ofDual
Mathlib.Order.Synonym
βˆ€ {Ξ± : Type u_1} [inst : LE Ξ±] {a b : Ξ±α΅’α΅ˆ}, OrderDual.ofDual a ≀ OrderDual.ofDual b ↔ b ≀ a
List.append_eq
Init.Data.List.Basic
βˆ€ {Ξ± : Type u} {as bs : List Ξ±}, as.append bs = as ++ bs
fderivWithin_of_mem_nhds
Mathlib.Analysis.Calculus.FDeriv.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {f : E β†’ F} {x : E} {s : Set E}, s ∈ nhds x β†’ fderivWithin π•œ f s x = fderiv π•œ f x
RingHom.Finite.finiteType
Mathlib.RingTheory.FiniteType
βˆ€ {A : Type u_1} {B : Type u_2} [inst : CommRing A] [inst_1 : CommRing B] {f : A β†’+* B}, f.Finite β†’ f.FiniteType
_private.Mathlib.Algebra.DirectSum.Internal.0.listProd_apply_eq_zero._simp_1_2
Mathlib.Algebra.DirectSum.Internal
βˆ€ {Ξ± : Sort u_1} {p q : Ξ± β†’ Prop} {a' : Ξ±}, (βˆ€ (a : Ξ±), a = a' ∨ q a β†’ p a) = (p a' ∧ βˆ€ (a : Ξ±), q a β†’ p a)
_private.Mathlib.GroupTheory.Coset.Basic.0.Subgroup.quotientiInfSubgroupOfEmbedding._simp_3
Mathlib.GroupTheory.Coset.Basic
βˆ€ {G : Type u_1} [inst : Group G] {H K : Subgroup G} {h : β†₯K}, (h ∈ H.subgroupOf K) = (↑h ∈ H)
_private.Lean.Meta.Tactic.Grind.EMatch.0.Lean.Meta.Grind.EMatch.checkSize.go.match_1
Lean.Meta.Tactic.Grind.EMatch
(motive : Lean.Expr β†’ Sort u_1) β†’ (e : Lean.Expr) β†’ ((binderName : Lean.Name) β†’ (d b : Lean.Expr) β†’ (binderInfo : Lean.BinderInfo) β†’ motive (Lean.Expr.forallE binderName d b binderInfo)) β†’ ((binderName : Lean.Name) β†’ (binderType b : Lean.Expr) β†’ (binderInfo : Lean.BinderInfo) β†’ motive (Lean.Expr.lam binderName binderType b binderInfo)) β†’ ((declName : Lean.Name) β†’ (type v b : Lean.Expr) β†’ (nondep : Bool) β†’ motive (Lean.Expr.letE declName type v b nondep)) β†’ ((data : Lean.MData) β†’ (e : Lean.Expr) β†’ motive (Lean.Expr.mdata data e)) β†’ ((typeName : Lean.Name) β†’ (idx : β„•) β†’ (e : Lean.Expr) β†’ motive (Lean.Expr.proj typeName idx e)) β†’ ((fn arg : Lean.Expr) β†’ motive (fn.app arg)) β†’ ((x : Lean.Expr) β†’ motive x) β†’ motive e
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.map_fst_toList_eq_keys._simp_1_2
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {instOrd : Ord Ξ±} {a b : Ξ±}, (compare a b β‰  Ordering.eq) = ((a == b) = false)
Std.DHashMap.Raw.Const.get?_inter_of_not_mem_right
Std.Data.DHashMap.RawLemmas
βˆ€ {Ξ± : Type u} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {Ξ² : Type v} {m₁ mβ‚‚ : Std.DHashMap.Raw Ξ± fun x => Ξ²} [EquivBEq Ξ±] [LawfulHashable Ξ±], m₁.WF β†’ mβ‚‚.WF β†’ βˆ€ {k : Ξ±}, k βˆ‰ mβ‚‚ β†’ Std.DHashMap.Raw.Const.get? (m₁ ∩ mβ‚‚) k = none
Subalgebra.perfectClosure
Mathlib.FieldTheory.PurelyInseparable.Basic
(R : Type u_1) β†’ (A : Type u_2) β†’ [inst : CommSemiring R] β†’ [inst_1 : CommSemiring A] β†’ [inst_2 : Algebra R A] β†’ (p : β„•) β†’ [ExpChar A p] β†’ Subalgebra R A
Int.modEq_sub_modulus_mul_iff
Mathlib.Data.Int.ModEq
βˆ€ {n a b c : β„€}, a ≑ b - n * c [ZMOD n] ↔ a ≑ b [ZMOD n]
ProbabilityTheory.Kernel.iIndepFun.compβ‚€
Mathlib.Probability.Independence.Kernel.IndepFun
βˆ€ {Ξ± : Type u_1} {Ξ© : Type u_2} {ΞΉ : Type u_3} {mΞ± : MeasurableSpace Ξ±} {mΞ© : MeasurableSpace Ξ©} {ΞΊ : ProbabilityTheory.Kernel Ξ± Ξ©} {ΞΌ : MeasureTheory.Measure Ξ±} {Ξ² : ΞΉ β†’ Type u_8} {Ξ³ : ΞΉ β†’ Type u_9} {mΞ² : (i : ΞΉ) β†’ MeasurableSpace (Ξ² i)} {mΞ³ : (i : ΞΉ) β†’ MeasurableSpace (Ξ³ i)} {f : (i : ΞΉ) β†’ Ξ© β†’ Ξ² i}, ProbabilityTheory.Kernel.iIndepFun f ΞΊ ΞΌ β†’ βˆ€ (g : (i : ΞΉ) β†’ Ξ² i β†’ Ξ³ i), (βˆ€ (i : ΞΉ), AEMeasurable (f i) (ΞΌ.bind ⇑κ)) β†’ (βˆ€ (i : ΞΉ), AEMeasurable (g i) (MeasureTheory.Measure.map (f i) (ΞΌ.bind ⇑κ))) β†’ ProbabilityTheory.Kernel.iIndepFun (fun i => g i ∘ f i) ΞΊ ΞΌ
_private.Std.Data.Iterators.Lemmas.Producers.Monadic.List.0.Std.Iterators.ListIterator.stepAsHetT_iterM._simp_1_6
Std.Data.Iterators.Lemmas.Producers.Monadic.List
βˆ€ {Ξ± : Type w} {x y : Std.Iterators.ListIterator Ξ±}, (x = y) = (x.list = y.list)
Submodule.map._proof_1
Mathlib.Algebra.Module.Submodule.Map
βˆ€ {R : Type u_4} {Rβ‚‚ : Type u_5} {M : Type u_2} {Mβ‚‚ : Type u_1} [inst : Semiring R] [inst_1 : Semiring Rβ‚‚] [inst_2 : AddCommMonoid M] [inst_3 : AddCommMonoid Mβ‚‚] [inst_4 : Module R M] [inst_5 : Module Rβ‚‚ Mβ‚‚] {σ₁₂ : R β†’+* Rβ‚‚} [RingHomSurjective σ₁₂] {F : Type u_3} [inst_7 : FunLike F M Mβ‚‚] [SemilinearMapClass F σ₁₂ M Mβ‚‚] (f : F) (p : Submodule R M) (c : Rβ‚‚) {x : Mβ‚‚}, x ∈ ⇑f '' ↑p β†’ c β€’ x ∈ ⇑f '' ↑p
Std.Do.Spec.forIn'_list._proof_5
Std.Do.Triple.SpecLemmas
βˆ€ {Ξ± : Type u_1} {xs : List Ξ±}, xs ++ [] = xs
Std.TreeMap.Raw.minKeyD_insert
Std.Data.TreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeMap.Raw Ξ± Ξ² cmp} [Std.TransCmp cmp], t.WF β†’ βˆ€ {k : Ξ±} {v : Ξ²} {fallback : Ξ±}, (t.insert k v).minKeyD fallback = t.minKey?.elim k fun k' => if (cmp k k').isLE = true then k else k'
hasFDerivWithinAt_pi'
Mathlib.Analysis.Calculus.FDeriv.Prod
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {x : E} {s : Set E} {ΞΉ : Type u_6} [Fintype ΞΉ] {F' : ΞΉ β†’ Type u_7} [inst_4 : (i : ΞΉ) β†’ NormedAddCommGroup (F' i)] [inst_5 : (i : ΞΉ) β†’ NormedSpace π•œ (F' i)] {Ξ¦ : E β†’ (i : ΞΉ) β†’ F' i} {Ξ¦' : E β†’L[π•œ] (i : ΞΉ) β†’ F' i}, HasFDerivWithinAt Ξ¦ Ξ¦' s x ↔ βˆ€ (i : ΞΉ), HasFDerivWithinAt (fun x => Ξ¦ x i) ((ContinuousLinearMap.proj i).comp Ξ¦') s x
Functor.map_unit
Init.Control.Lawful.Basic
βˆ€ {f : Type u_1 β†’ Type u_2} [inst : Functor f] [LawfulFunctor f] {a : f PUnit.{u_1 + 1}}, (fun x => PUnit.unit) <$> a = a
Sym.filterNe._proof_1
Mathlib.Data.Sym.Basic
βˆ€ {Ξ± : Type u_1} {n : β„•} (m : Sym Ξ± n), (↑m).card < n + 1
Lean.IR.Expr.proj.elim
Lean.Compiler.IR.Basic
{motive : Lean.IR.Expr β†’ Sort u} β†’ (t : Lean.IR.Expr) β†’ t.ctorIdx = 3 β†’ ((i : β„•) β†’ (x : Lean.IR.VarId) β†’ motive (Lean.IR.Expr.proj i x)) β†’ motive t
SkewMonoidAlgebra.noConfusion
Mathlib.Algebra.SkewMonoidAlgebra.Basic
{P : Sort u} β†’ {k : Type u_1} β†’ {G : Type u_2} β†’ {inst : Zero k} β†’ {t : SkewMonoidAlgebra k G} β†’ {k' : Type u_1} β†’ {G' : Type u_2} β†’ {inst' : Zero k'} β†’ {t' : SkewMonoidAlgebra k' G'} β†’ k = k' β†’ G = G' β†’ inst ≍ inst' β†’ t ≍ t' β†’ SkewMonoidAlgebra.noConfusionType P t t'
Vector.getElem?_append_right
Init.Data.Vector.Lemmas
βˆ€ {Ξ± : Type u_1} {n m i : β„•} {xs : Vector Ξ± n} {ys : Vector Ξ± m}, n ≀ i β†’ (xs ++ ys)[i]? = ys[i - n]?
Lean.Level.collectMVars
Lean.Level
Lean.Level β†’ optParam Lean.LMVarIdSet βˆ… β†’ Lean.LMVarIdSet
NormedAddTorsor
Mathlib.Analysis.Normed.Group.AddTorsor
(V : outParam (Type u_1)) β†’ (P : Type u_2) β†’ [SeminormedAddCommGroup V] β†’ [PseudoMetricSpace P] β†’ Type (max u_1 u_2)
SubMulAction.instSMulSubtypeMem._proof_1
Mathlib.GroupTheory.GroupAction.SubMulAction
βˆ€ {R : Type u_2} {M : Type u_1} [inst : SMul R M] (p : SubMulAction R M) (c : R) (x : β†₯p), c β€’ ↑x ∈ p
Ο‰CPO._sizeOf_1
Mathlib.Order.Category.OmegaCompletePartialOrder
Ο‰CPO β†’ β„•
IsAlgebraic.smul
Mathlib.RingTheory.Algebraic.Integral
βˆ€ {R : Type u_1} {A : Type u_3} [inst : CommRing R] [inst_1 : Ring A] [inst_2 : Algebra R A] {a : A}, IsAlgebraic R a β†’ βˆ€ (r : R), IsAlgebraic R (r β€’ a)
Quiver.Path.nil
Mathlib.Combinatorics.Quiver.Path
{V : Type u} β†’ [inst : Quiver V] β†’ {a : V} β†’ Quiver.Path a a
_private.Init.Data.List.Impl.0.List.zipWith_eq_zipWithTR.go
Init.Data.List.Impl
βˆ€ (Ξ± : Type u_3) (Ξ² : Type u_2) (Ξ³ : Type u_1) (f : Ξ± β†’ Ξ² β†’ Ξ³) (as : List Ξ±) (bs : List Ξ²) (acc : Array Ξ³), List.zipWithTR.go✝ f as bs acc = acc.toList ++ List.zipWith f as bs
WeierstrassCurve.Projective.Point.mk.inj
Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Point
βˆ€ {R : Type r} {inst : CommRing R} {W' : WeierstrassCurve.Projective R} {point : WeierstrassCurve.Projective.PointClass R} {nonsingular : W'.NonsingularLift point} {point_1 : WeierstrassCurve.Projective.PointClass R} {nonsingular_1 : W'.NonsingularLift point_1}, { point := point, nonsingular := nonsingular } = { point := point_1, nonsingular := nonsingular_1 } β†’ point = point_1
LinearMap.IsIdempotentElem.isSymmetric_iff_isOrtho_range_ker
Mathlib.Analysis.InnerProductSpace.Symmetric
βˆ€ {π•œ : Type u_1} {E : Type u_2} [inst : RCLike π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] {T : E β†’β‚—[π•œ] E}, IsIdempotentElem T β†’ (T.IsSymmetric ↔ LinearMap.range T βŸ‚ LinearMap.ker T)
dist_le_range_sum_dist
Mathlib.Topology.MetricSpace.Pseudo.Basic
βˆ€ {Ξ± : Type u} [inst : PseudoMetricSpace Ξ±] (f : β„• β†’ Ξ±) (n : β„•), dist (f 0) (f n) ≀ βˆ‘ i ∈ Finset.range n, dist (f i) (f (i + 1))
Mathlib.Meta.FunProp.LambdaTheorems._sizeOf_inst
Mathlib.Tactic.FunProp.Theorems
SizeOf Mathlib.Meta.FunProp.LambdaTheorems
CStarMatrix.ofMatrixRingEquiv._proof_2
Mathlib.Analysis.CStarAlgebra.CStarMatrix
βˆ€ {n : Type u_1} {A : Type u_2} [inst : Semiring A] (x x_1 : Matrix n n A), CStarMatrix.ofMatrix.toFun (x + x_1) = CStarMatrix.ofMatrix.toFun (x + x_1)
PiTensorProduct.mapMultilinear_apply
Mathlib.LinearAlgebra.PiTensorProduct
βˆ€ {ΞΉ : Type u_1} (R : Type u_4) [inst : CommSemiring R] (s : ΞΉ β†’ Type u_7) [inst_1 : (i : ΞΉ) β†’ AddCommMonoid (s i)] [inst_2 : (i : ΞΉ) β†’ Module R (s i)] (t : ΞΉ β†’ Type u_11) [inst_3 : (i : ΞΉ) β†’ AddCommMonoid (t i)] [inst_4 : (i : ΞΉ) β†’ Module R (t i)] (f : (i : ΞΉ) β†’ s i β†’β‚—[R] t i), (PiTensorProduct.mapMultilinear R s t) f = PiTensorProduct.map f
Β«term_=_Β»
Init.Notation
Lean.TrailingParserDescr
CategoryTheory.Over.prodLeftIsoPullback_hom_fst_assoc
Mathlib.CategoryTheory.Limits.Constructions.Over.Products
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X : C} (Y Z : CategoryTheory.Over X) [inst_1 : CategoryTheory.Limits.HasPullback Y.hom Z.hom] [inst_2 : CategoryTheory.Limits.HasBinaryProduct Y Z] {Z_1 : C} (h : Y.left ⟢ Z_1), CategoryTheory.CategoryStruct.comp (Y.prodLeftIsoPullback Z).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst Y.hom Z.hom) h) = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst.left h
_private.Init.Data.List.Perm.0.List.reverse_perm.match_1_1
Init.Data.List.Perm
βˆ€ {Ξ± : Type u_1} (motive : List Ξ± β†’ Prop) (x : List Ξ±), (βˆ€ (a : Unit), motive []) β†’ (βˆ€ (a : Ξ±) (l : List Ξ±), motive (a :: l)) β†’ motive x
Matrix.det_of_mem_unitary
Mathlib.LinearAlgebra.UnitaryGroup
βˆ€ {n : Type u} [inst : DecidableEq n] [inst_1 : Fintype n] {Ξ± : Type v} [inst_2 : CommRing Ξ±] [inst_3 : StarRing Ξ±] {A : Matrix n n Ξ±}, A ∈ Matrix.unitaryGroup n Ξ± β†’ A.det ∈ unitary Ξ±
instAB4AddCommGrpCat
Mathlib.Algebra.Category.Grp.AB
CategoryTheory.AB4 AddCommGrpCat
ContinuousAt.lineMap
Mathlib.Topology.Algebra.Affine
βˆ€ {R : Type u_1} {V : Type u_2} {P : Type u_3} [inst : AddCommGroup V] [inst_1 : TopologicalSpace V] [inst_2 : AddTorsor V P] [inst_3 : TopologicalSpace P] [IsTopologicalAddTorsor P] [inst_5 : Ring R] [inst_6 : Module R V] [inst_7 : TopologicalSpace R] [ContinuousSMul R V] {X : Type u_6} [inst_9 : TopologicalSpace X] {f₁ fβ‚‚ : X β†’ P} {g : X β†’ R} {x : X}, ContinuousAt f₁ x β†’ ContinuousAt fβ‚‚ x β†’ ContinuousAt g x β†’ ContinuousAt (fun x => (AffineMap.lineMap (f₁ x) (fβ‚‚ x)) (g x)) x
AddMonoidAlgebra.le_infDegree_mul
Mathlib.Algebra.MonoidAlgebra.Degree
βˆ€ {R : Type u_1} {A : Type u_3} {T : Type u_4} [inst : Semiring R] [inst_1 : SemilatticeInf T] [inst_2 : OrderTop T] [inst_3 : AddZeroClass A] [inst_4 : Add T] [AddLeftMono T] [AddRightMono T] (D : A β†’β‚™+ T) (f g : AddMonoidAlgebra R A), AddMonoidAlgebra.infDegree (⇑D) f + AddMonoidAlgebra.infDegree (⇑D) g ≀ AddMonoidAlgebra.infDegree (⇑D) (f * g)
Lean.Elab.Term.Quotation.elabQuot._@.Lean.Elab.Quotation.1964439861._hygCtx._hyg.3
Lean.Elab.Quotation
Lean.Elab.Term.TermElab
Std.Iterators.IterM.inductSteps._unsafe_rec
Init.Data.Iterators.Lemmas.Monadic.Basic
{Ξ± : Type u_1} β†’ {m : Type u_1 β†’ Type u_2} β†’ {Ξ² : Type u_1} β†’ [inst : Std.Iterators.Iterator Ξ± m Ξ²] β†’ [Std.Iterators.Finite Ξ± m] β†’ (motive : Std.IterM m Ξ² β†’ Sort x) β†’ ((it : Std.IterM m Ξ²) β†’ ({it' : Std.IterM m Ξ²} β†’ {out : Ξ²} β†’ it.IsPlausibleStep (Std.Iterators.IterStep.yield it' out) β†’ motive it') β†’ ({it' : Std.IterM m Ξ²} β†’ it.IsPlausibleStep (Std.Iterators.IterStep.skip it') β†’ motive it') β†’ motive it) β†’ (it : Std.IterM m Ξ²) β†’ motive it
_private.Mathlib.Data.Int.Interval.0.Int.instLocallyFiniteOrder._proof_5
Mathlib.Data.Int.Interval
βˆ€ (a b x : β„€), a ≀ x ∧ x ≀ b β†’ Β¬((x - a).toNat < (b + 1 - a).toNat ∧ a + ↑(x - a).toNat = x) β†’ False
instCompleteLatticeStructureGroupoid._proof_7
Mathlib.Geometry.Manifold.ChartedSpace
βˆ€ {H : Type u_1} [inst : TopologicalSpace H] (a b : StructureGroupoid H), b ≀ SemilatticeSup.sup a b
_private.Mathlib.RingTheory.Nilpotent.Exp.0.IsNilpotent.exp_add_of_commute._proof_1_3
Mathlib.RingTheory.Nilpotent.Exp
βˆ€ (n₁ nβ‚‚ : β„•), max n₁ nβ‚‚ + 1 + (max n₁ nβ‚‚ + 1) ≀ 2 * max n₁ nβ‚‚ + 1 + 1
_private.Lean.Meta.Tactic.ExposeNames.0.Lean.Meta.getLCtxWithExposedNames
Lean.Meta.Tactic.ExposeNames
Lean.MetaM Lean.LocalContext
List.cons.inj
Init.Core
βˆ€ {Ξ± : Type u} {head : Ξ±} {tail : List Ξ±} {head_1 : Ξ±} {tail_1 : List Ξ±}, head :: tail = head_1 :: tail_1 β†’ head = head_1 ∧ tail = tail_1
Empty.borelSpace
Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
BorelSpace Empty