name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Set.inv_mem_center
Mathlib.Algebra.Group.Center
βˆ€ {M : Type u_1} [inst : DivisionMonoid M] {a : M}, a ∈ Set.center M β†’ a⁻¹ ∈ Set.center M
MeasureTheory.Measure.pi.isOpenPosMeasure
Mathlib.MeasureTheory.Constructions.Pi
βˆ€ {ΞΉ : Type u_1} {Ξ± : ΞΉ β†’ Type u_3} [inst : Fintype ΞΉ] [inst_1 : (i : ΞΉ) β†’ MeasurableSpace (Ξ± i)] (ΞΌ : (i : ΞΉ) β†’ MeasureTheory.Measure (Ξ± i)) [βˆ€ (i : ΞΉ), MeasureTheory.SigmaFinite (ΞΌ i)] [inst_3 : (i : ΞΉ) β†’ TopologicalSpace (Ξ± i)] [βˆ€ (i : ΞΉ), (ΞΌ i).IsOpenPosMeasure], (MeasureTheory.Measure.pi ΞΌ).IsOpenPosMeasure
LocallyConstant.indicator_of_notMem
Mathlib.Topology.LocallyConstant.Basic
βˆ€ {X : Type u_1} [inst : TopologicalSpace X] {R : Type u_5} [inst_1 : Zero R] {U : Set X} (f : LocallyConstant X R) {a : X} (hU : IsClopen U), a βˆ‰ U β†’ (f.indicator hU) a = 0
Lean.Grind.instCommRingUSize._proof_5
Init.GrindInstances.Ring.UInt
βˆ€ (n : β„•) (a : USize), ↑↑n * a = ↑n * a
_private.Init.Data.BitVec.Bitblast.0.BitVec.msb_srem._proof_1_1
Init.Data.BitVec.Bitblast
βˆ€ {w : β„•} {x : BitVec w}, x.toInt < 0 β†’ 0 ≀ x.toInt β†’ False
Lean.Compiler.LCNF.specExtension
Lean.Compiler.LCNF.SpecInfo
Lean.SimplePersistentEnvExtension Lean.Compiler.LCNF.SpecEntry Lean.Compiler.LCNF.SpecState
Bipointed.swapEquiv_functor_map_toFun
Mathlib.CategoryTheory.Category.Bipointed
βˆ€ {X Y : Bipointed} (f : X ⟢ Y) (a : X.X), (Bipointed.swapEquiv.functor.map f).toFun a = f.toFun a
Batteries.RBNode.foldr.match_1
Batteries.Data.RBMap.Basic
{Ξ± : Type u_1} β†’ {Οƒ : Sort u_3} β†’ (motive : Batteries.RBNode Ξ± β†’ Οƒ β†’ Sort u_2) β†’ (x : Batteries.RBNode Ξ±) β†’ (x_1 : Οƒ) β†’ ((b : Οƒ) β†’ motive Batteries.RBNode.nil b) β†’ ((c : Batteries.RBColor) β†’ (l : Batteries.RBNode Ξ±) β†’ (v : Ξ±) β†’ (r : Batteries.RBNode Ξ±) β†’ (b : Οƒ) β†’ motive (Batteries.RBNode.node c l v r) b) β†’ motive x x_1
Nat.greatestFib.eq_1
Mathlib.Data.Nat.Fib.Zeckendorf
βˆ€ (n : β„•), n.greatestFib = Nat.findGreatest (fun k => Nat.fib k ≀ n) (n + 1)
_private.Lean.Elab.Structure.0.Lean.Elab.Command.Structure.getFieldDefaultValue?
Lean.Elab.Structure
Lean.Name β†’ Array Lean.Expr β†’ Lean.Name β†’ Lean.Elab.Command.Structure.StructElabM✝ (Option Lean.Expr)
surjOn_Icc_of_monotone_surjective
Mathlib.Order.Interval.Set.SurjOn
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : LinearOrder Ξ±] [inst_1 : PartialOrder Ξ²] {f : Ξ± β†’ Ξ²}, Monotone f β†’ Function.Surjective f β†’ βˆ€ {a b : Ξ±}, a ≀ b β†’ Set.SurjOn f (Set.Icc a b) (Set.Icc (f a) (f b))
MeasureTheory.JordanDecomposition.zero_posPart
Mathlib.MeasureTheory.VectorMeasure.Decomposition.Jordan
βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±], MeasureTheory.JordanDecomposition.posPart 0 = 0
_private.Mathlib.Data.List.Triplewise.0.List.triplewise_iff_getElem._proof_1_14
Mathlib.Data.List.Triplewise
βˆ€ {Ξ± : Type u_1} (tail : List Ξ±) (i j k : β„•), i < j β†’ j < k β†’ k < tail.length + 1 β†’ i < tail.length
MapClusterPt.prodMap
Mathlib.Topology.Constructions
βˆ€ {X : Type u} {Y : Type v} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] {Ξ± : Type u_5} {Ξ² : Type u_6} {f : Ξ± β†’ X} {g : Ξ² β†’ Y} {la : Filter Ξ±} {lb : Filter Ξ²} {x : X} {y : Y}, MapClusterPt x la f β†’ MapClusterPt y lb g β†’ MapClusterPt (x, y) (la Γ—Λ’ lb) (Prod.map f g)
Std.Tactic.BVDecide.Normalize.BitVec.zero_ult'
Std.Tactic.BVDecide.Normalize.BitVec
βˆ€ {w : β„•} (a : BitVec w), (0#w).ult a = !a == 0#w
GroupExtension.Splitting.semidirectProductMulEquiv
Mathlib.GroupTheory.GroupExtension.Basic
{N : Type u_1} β†’ {G : Type u_2} β†’ [inst : Group N] β†’ [inst_1 : Group G] β†’ {E : Type u_3} β†’ [inst_2 : Group E] β†’ {S : GroupExtension N E G} β†’ (s : S.Splitting) β†’ N β‹Š[s.conjAct] G ≃* E
CompTriple.IsId.rec
Mathlib.Logic.Function.CompTypeclasses
{M : Type u_1} β†’ {Οƒ : M β†’ M} β†’ {motive : CompTriple.IsId Οƒ β†’ Sort u} β†’ ((eq_id : Οƒ = id) β†’ motive β‹―) β†’ (t : CompTriple.IsId Οƒ) β†’ motive t
_private.Lean.Data.Array.0.Array.mask.match_1
Lean.Data.Array
{Ξ± : Type u_1} β†’ (motive : Option (Ξ± Γ— Subarray Ξ±) β†’ Sort u_2) β†’ (x : Option (Ξ± Γ— Subarray Ξ±)) β†’ (Unit β†’ motive none) β†’ ((x : Ξ±) β†’ (s' : Subarray Ξ±) β†’ motive (some (x, s'))) β†’ motive x
Std.Tactic.BVDecide.BVExpr.bitblast.blastShiftLeftConst.go._unary._proof_3
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.ShiftLeft
βˆ€ {Ξ± : Type} [inst : Hashable Ξ±] [inst_1 : DecidableEq Ξ±] {w : β„•} (aig : Std.Sat.AIG Ξ±) (input : aig.RefVec w) (distance curr : β„•) (hcurr : curr ≀ w) (s : aig.RefVec curr) (hidx : curr < w) (hdist : Β¬curr < distance), InvImage (fun x1 x2 => x1 < x2) (fun x => PSigma.casesOn x fun curr hcurr => PSigma.casesOn hcurr fun hcurr s => w - curr) ⟨curr + 1, βŸ¨β‹―, s.push (input.get (curr - distance) β‹―)⟩⟩ ⟨curr, ⟨hcurr, s⟩⟩
neg_add_cancel_comm_assoc
Mathlib.Algebra.Group.Defs
βˆ€ {G : Type u_1} [inst : AddCommGroup G] (a b : G), -a + (b + a) = b
Set.countable_setOf_finite_subset
Mathlib.Data.Set.Countable
βˆ€ {Ξ± : Type u} {s : Set Ξ±}, s.Countable β†’ {t | t.Finite ∧ t βŠ† s}.Countable
IntervalIntegrable.mono_set
Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
βˆ€ {Ξ΅ : Type u_3} [inst : TopologicalSpace Ξ΅] [inst_1 : ENormedAddMonoid Ξ΅] {f : ℝ β†’ Ξ΅} {a b c d : ℝ} {ΞΌ : MeasureTheory.Measure ℝ} [TopologicalSpace.PseudoMetrizableSpace Ξ΅], IntervalIntegrable f ΞΌ a b β†’ Set.uIcc c d βŠ† Set.uIcc a b β†’ IntervalIntegrable f ΞΌ c d
Set.restrict_ite_compl
Mathlib.Data.Set.Restrict
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} (f g : Ξ± β†’ Ξ²) (s : Set Ξ±) [inst : (x : Ξ±) β†’ Decidable (x ∈ s)], (sᢜ.restrict fun a => if a ∈ s then f a else g a) = sᢜ.restrict g
CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution_map
Mathlib.CategoryTheory.Localization.DerivabilityStructure.Constructor
βˆ€ {C₁ : Type u_1} {Cβ‚‚ : Type u_2} [inst : CategoryTheory.Category.{v_1, u_1} C₁] [inst_1 : CategoryTheory.Category.{v_2, u_2} Cβ‚‚] {W₁ : CategoryTheory.MorphismProperty C₁} {Wβ‚‚ : CategoryTheory.MorphismProperty Cβ‚‚} (Ξ¦ : CategoryTheory.LocalizerMorphism W₁ Wβ‚‚) {D : Type u_3} [inst_2 : CategoryTheory.Category.{v_3, u_3} D] (L : CategoryTheory.Functor Cβ‚‚ D) [inst_3 : L.IsLocalization Wβ‚‚] {Xβ‚‚ : Cβ‚‚} {X₃ : D} (y : L.obj Xβ‚‚ ⟢ X₃) {R R' : Ξ¦.RightResolution Xβ‚‚} (Ο† : R ⟢ R'), (CategoryTheory.LocalizerMorphism.IsRightDerivabilityStructure.Constructor.fromRightResolution Ξ¦ L y).map Ο† = CategoryTheory.CostructuredArrow.homMk (CategoryTheory.StructuredArrow.homMk Ο†.f β‹―) β‹―
descPochhammer_eval_eq_descFactorial
Mathlib.RingTheory.Polynomial.Pochhammer
βˆ€ (R : Type u) [inst : Ring R] (n k : β„•), Polynomial.eval (↑n) (descPochhammer R k) = ↑(n.descFactorial k)
ONote.NFBelow
Mathlib.SetTheory.Ordinal.Notation
ONote β†’ Ordinal.{0} β†’ Prop
Units.instDecidableEq
Mathlib.Algebra.Group.Units.Defs
{Ξ± : Type u} β†’ [inst : Monoid Ξ±] β†’ [DecidableEq Ξ±] β†’ DecidableEq Ξ±Λ£
_private.Mathlib.Analysis.Complex.Convex.0.Complex.instPathConnectedSpaceUnits._simp_3
Mathlib.Analysis.Complex.Convex
βˆ€ {a b : Prop}, (Β¬(a ∧ b)) = (Β¬a ∨ Β¬b)
OneHomClass
Mathlib.Algebra.Group.Hom.Defs
(F : Type u_10) β†’ (M : outParam (Type u_11)) β†’ (N : outParam (Type u_12)) β†’ [One M] β†’ [One N] β†’ [FunLike F M N] β†’ Prop
Std.Do.Β«term_βˆ§β‚š_Β»
Std.Do.PostCond
Lean.TrailingParserDescr
R0Space.closure_singleton
Mathlib.Topology.Separation.Basic
βˆ€ {X : Type u_1} [inst : TopologicalSpace X] [R0Space X] (x : X), closure {x} = (nhds x).ker
Fin.val_natCast
Mathlib.Data.Fin.Basic
βˆ€ (a n : β„•) [inst : NeZero n], ↑↑a = a % n
OneHom.coe_id
Mathlib.Algebra.Group.Hom.Defs
βˆ€ {M : Type u_10} [inst : One M], ⇑(OneHom.id M) = id
Std.DHashMap.Const.getKey!_unitOfList_of_contains_eq_false
Std.Data.DHashMap.Lemmas
βˆ€ {Ξ± : Type u} {x : BEq Ξ±} {x_1 : Hashable Ξ±} [EquivBEq Ξ±] [LawfulHashable Ξ±] [inst : Inhabited Ξ±] {l : List Ξ±} {k : Ξ±}, l.contains k = false β†’ (Std.DHashMap.Const.unitOfList l).getKey! k = default
Finset.SupIndep.le_sup_iff
Mathlib.Order.SupIndep
βˆ€ {Ξ± : Type u_1} {ΞΉ : Type u_3} [inst : Lattice Ξ±] [inst_1 : OrderBot Ξ±] {s t : Finset ΞΉ} {f : ΞΉ β†’ Ξ±} {i : ΞΉ}, s.SupIndep f β†’ t βŠ† s β†’ i ∈ s β†’ (βˆ€ (i : ΞΉ), f i β‰  βŠ₯) β†’ (f i ≀ t.sup f ↔ i ∈ t)
_private.Mathlib.Dynamics.TopologicalEntropy.CoverEntropy.0.Dynamics.nonempty_inter_of_coverMincard._simp_1_1
Mathlib.Dynamics.TopologicalEntropy.CoverEntropy
βˆ€ {Ξ± : Type u} {ΞΉ : Sort v} {x : Ξ±} {s : ΞΉ β†’ Set Ξ±}, (x ∈ ⋃ i, s i) = βˆƒ i, x ∈ s i
_private.Mathlib.MeasureTheory.Integral.Bochner.L1.0.MeasureTheory.SimpleFunc.integral_mono_measure._simp_1_1
Mathlib.MeasureTheory.Integral.Bochner.L1
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : MeasurableSpace Ξ±] {f : MeasureTheory.SimpleFunc Ξ± Ξ²} {p : Ξ² β†’ Prop}, (βˆ€ y ∈ f.range, p y) = βˆ€ (x : Ξ±), p (f x)
_private.Mathlib.RingTheory.PowerSeries.Derivative.0.PowerSeries.derivativeFun_coe_mul_coe
Mathlib.RingTheory.PowerSeries.Derivative
βˆ€ {R : Type u_1} [inst : CommSemiring R] (f g : Polynomial R), (↑f * ↑g).derivativeFun = ↑f * ↑(Polynomial.derivative g) + ↑g * ↑(Polynomial.derivative f)
TensorProduct.LieModule.map._proof_1
Mathlib.Algebra.Lie.TensorProduct
βˆ€ {R : Type u_3} [inst : CommRing R] {L : Type u_6} {M : Type u_5} {N : Type u_4} {P : Type u_1} {Q : Type u_2} [inst_1 : LieRing L] [inst_2 : LieAlgebra R L] [inst_3 : AddCommGroup M] [inst_4 : Module R M] [inst_5 : LieRingModule L M] [inst_6 : LieModule R L M] [inst_7 : AddCommGroup N] [inst_8 : Module R N] [inst_9 : LieRingModule L N] [inst_10 : LieModule R L N] [inst_11 : AddCommGroup P] [inst_12 : Module R P] [inst_13 : LieRingModule L P] [inst_14 : LieModule R L P] [inst_15 : AddCommGroup Q] [inst_16 : Module R Q] [inst_17 : LieRingModule L Q] [inst_18 : LieModule R L Q] (f : M →ₗ⁅R,L⁆ P) (g : N →ₗ⁅R,L⁆ Q) {x : L} {t : TensorProduct R M N}, (TensorProduct.map ↑f ↑g).toFun ⁅x, t⁆ = ⁅x, (TensorProduct.map ↑f ↑g).toFun t⁆
ZeroHom.mk.noConfusion
Mathlib.Algebra.Group.Hom.Defs
{M : Type u_10} β†’ {N : Type u_11} β†’ {inst : Zero M} β†’ {inst_1 : Zero N} β†’ {P : Sort u} β†’ {toFun : M β†’ N} β†’ {map_zero' : toFun 0 = 0} β†’ {toFun' : M β†’ N} β†’ {map_zero'' : toFun' 0 = 0} β†’ { toFun := toFun, map_zero' := map_zero' } = { toFun := toFun', map_zero' := map_zero'' } β†’ (toFun ≍ toFun' β†’ P) β†’ P
_private.Init.Data.SInt.Lemmas.0.Int8.le_iff_lt_or_eq._simp_1_3
Init.Data.SInt.Lemmas
βˆ€ {x y : Int8}, (x < y) = (x.toInt < y.toInt)
_private.Batteries.Data.UnionFind.Basic.0.Batteries.UnionFind.findAux.match_1.splitter
Batteries.Data.UnionFind.Basic
(self : Batteries.UnionFind) β†’ (motive : Batteries.UnionFind.FindAux self.size β†’ Sort u_1) β†’ (x : Batteries.UnionFind.FindAux self.size) β†’ ((arr₁ : Array Batteries.UFNode) β†’ (root : Fin self.size) β†’ (H : arr₁.size = self.size) β†’ motive { s := arr₁, root := root, size_eq := H }) β†’ motive x
CategoryTheory.WithInitial.equivComma._proof_12
Mathlib.CategoryTheory.WithTerminal.Basic
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_4, u_2} C] {D : Type u_3} [inst_1 : CategoryTheory.Category.{u_1, u_3} D] {X Y : CategoryTheory.Comma (CategoryTheory.Functor.const C) (CategoryTheory.Functor.id (CategoryTheory.Functor C D))} (f : X ⟢ Y), CategoryTheory.CategoryStruct.comp (({ obj := CategoryTheory.WithInitial.ofCommaObject, map := fun {X Y} => CategoryTheory.WithInitial.ofCommaMorphism, map_id := β‹―, map_comp := β‹― }.comp { obj := CategoryTheory.WithInitial.mkCommaObject, map := fun {X Y} => CategoryTheory.WithInitial.mkCommaMorphism, map_id := β‹―, map_comp := β‹― }).map f) (CategoryTheory.Iso.refl (({ obj := CategoryTheory.WithInitial.ofCommaObject, map := fun {X Y} => CategoryTheory.WithInitial.ofCommaMorphism, map_id := β‹―, map_comp := β‹― }.comp { obj := CategoryTheory.WithInitial.mkCommaObject, map := fun {X Y} => CategoryTheory.WithInitial.mkCommaMorphism, map_id := β‹―, map_comp := β‹― }).obj Y)).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.Iso.refl (({ obj := CategoryTheory.WithInitial.ofCommaObject, map := fun {X Y} => CategoryTheory.WithInitial.ofCommaMorphism, map_id := β‹―, map_comp := β‹― }.comp { obj := CategoryTheory.WithInitial.mkCommaObject, map := fun {X Y} => CategoryTheory.WithInitial.mkCommaMorphism, map_id := β‹―, map_comp := β‹― }).obj X)).hom ((CategoryTheory.Functor.id (CategoryTheory.Comma (CategoryTheory.Functor.const C) (CategoryTheory.Functor.id (CategoryTheory.Functor C D)))).map f)
Aesop.RuleBuilderOptions.indexingMode?
Aesop.Builder.Basic
Aesop.RuleBuilderOptions β†’ Option Aesop.IndexingMode
Units.inv_mul_of_eq
Mathlib.Algebra.Group.Units.Defs
βˆ€ {Ξ± : Type u} [inst : Monoid Ξ±] {u : Ξ±Λ£} {a : Ξ±}, ↑u = a β†’ ↑u⁻¹ * a = 1
Nonneg.mk_smul
Mathlib.Algebra.Order.Nonneg.Module
βˆ€ {R : Type u_1} {S : Type u_2} [inst : Semiring R] [inst_1 : PartialOrder R] [inst_2 : SMul R S] (a : R) (ha : 0 ≀ a) (x : S), ⟨a, ha⟩ β€’ x = a β€’ x
Set.preimage_singleton_eq_empty
Mathlib.Data.Set.Image
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Ξ± β†’ Ξ²} {y : Ξ²}, f ⁻¹' {y} = βˆ… ↔ y βˆ‰ Set.range f
Set.isSimpleOrder_Iic_iff_isAtom
Mathlib.Order.Atoms
βˆ€ {Ξ± : Type u_2} [inst : PartialOrder Ξ±] [inst_1 : OrderBot Ξ±] {a : Ξ±}, IsSimpleOrder ↑(Set.Iic a) ↔ IsAtom a
CategoryTheory.MonoidalCategory.fullSubcategory._proof_11
Mathlib.CategoryTheory.Monoidal.Category
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.MonoidalCategory C] (P : CategoryTheory.ObjectProperty C) {X₁ Xβ‚‚ X₃ Y₁ Yβ‚‚ Y₃ : P.FullSubcategory} (f₁ : X₁.obj ⟢ Y₁.obj) (fβ‚‚ : Xβ‚‚.obj ⟢ Yβ‚‚.obj) (f₃ : X₃.obj ⟢ Y₃.obj), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (CategoryTheory.MonoidalCategoryStruct.tensorHom f₁ fβ‚‚) f₃) (CategoryTheory.MonoidalCategoryStruct.associator Y₁.obj Yβ‚‚.obj Y₃.obj).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator X₁.obj Xβ‚‚.obj X₃.obj).hom (CategoryTheory.MonoidalCategoryStruct.tensorHom f₁ (CategoryTheory.MonoidalCategoryStruct.tensorHom fβ‚‚ f₃))
Lean.Elab.Tactic.Conv.PatternMatchState.rec
Lean.Elab.Tactic.Conv.Pattern
{motive : Lean.Elab.Tactic.Conv.PatternMatchState β†’ Sort u} β†’ ((subgoals : Array Lean.MVarId) β†’ motive (Lean.Elab.Tactic.Conv.PatternMatchState.all subgoals)) β†’ ((subgoals : Array (β„• Γ— Lean.MVarId)) β†’ (idx : β„•) β†’ (remaining : List (β„• Γ— β„•)) β†’ motive (Lean.Elab.Tactic.Conv.PatternMatchState.occs subgoals idx remaining)) β†’ (t : Lean.Elab.Tactic.Conv.PatternMatchState) β†’ motive t
OrderMonoidHom.inrβ‚—
Mathlib.Algebra.Order.Monoid.Lex
(Ξ± : Type u_1) β†’ (Ξ² : Type u_2) β†’ [inst : Monoid Ξ±] β†’ [inst_1 : PartialOrder Ξ±] β†’ [inst_2 : Monoid Ξ²] β†’ [inst_3 : Preorder Ξ²] β†’ Ξ² β†’*o Lex (Ξ± Γ— Ξ²)
selfAdjoint.instField._proof_12
Mathlib.Algebra.Star.SelfAdjoint
βˆ€ {R : Type u_1} [inst : Field R] [inst_1 : StarRing R] (x : β„€), ↑↑x = ↑↑x
WithBot.map_zero
Mathlib.Algebra.Order.Monoid.Unbundled.WithTop
βˆ€ {Ξ± : Type u} [inst : Zero Ξ±] {Ξ² : Type u_1} (f : Ξ± β†’ Ξ²), WithBot.map f 0 = ↑(f 0)
ZeroHom.instModule._proof_1
Mathlib.Algebra.Module.Hom
βˆ€ {R : Type u_3} {A : Type u_2} {B : Type u_1} [inst : Semiring R] [inst_1 : AddMonoid A] [inst_2 : AddCommMonoid B] [inst_3 : Module R B] (r : R), r β€’ 0 = 0
ConvexOn.lt_left_of_right_lt'
Mathlib.Analysis.Convex.Function
βˆ€ {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_5} [inst : Semiring π•œ] [inst_1 : PartialOrder π•œ] [inst_2 : AddCommMonoid E] [inst_3 : AddCommMonoid Ξ²] [inst_4 : LinearOrder Ξ²] [IsOrderedCancelAddMonoid Ξ²] [inst_6 : Module π•œ E] [inst_7 : Module π•œ Ξ²] [PosSMulStrictMono π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²}, ConvexOn π•œ s f β†’ βˆ€ {x y : E}, x ∈ s β†’ y ∈ s β†’ βˆ€ {a b : π•œ}, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ f y < f (a β€’ x + b β€’ y) β†’ f (a β€’ x + b β€’ y) < f x
Except.ctorIdx
Init.Prelude
{Ξ΅ : Type u} β†’ {Ξ± : Type v} β†’ Except Ξ΅ Ξ± β†’ β„•
_private.Mathlib.Algebra.Divisibility.Prod.0.pi_dvd_iff._simp_1_2
Mathlib.Algebra.Divisibility.Prod
βˆ€ {Ξ± : Sort u} {Ξ² : Ξ± β†’ Sort v} {f g : (x : Ξ±) β†’ Ξ² x}, (f = g) = βˆ€ (x : Ξ±), f x = g x
AlgebraicGeometry.Scheme.basicOpen_le
Mathlib.AlgebraicGeometry.Scheme
βˆ€ (X : AlgebraicGeometry.Scheme) {U : X.Opens} (f : ↑(X.presheaf.obj (Opposite.op U))), X.basicOpen f ≀ U
CategoryTheory.Precoverage.mem_coverings_of_isIso
Mathlib.CategoryTheory.Sites.Precoverage
βˆ€ {C : Type u} {inst : CategoryTheory.Category.{v, u} C} {J : CategoryTheory.Precoverage C} [self : J.HasIsos] {S T : C} (f : S ⟢ T) [CategoryTheory.IsIso f], CategoryTheory.Presieve.singleton f ∈ J.coverings T
Primrec.PrimrecBounded
Mathlib.Computability.Primrec
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ [Primcodable Ξ±] β†’ [Primcodable Ξ²] β†’ (Ξ± β†’ Ξ²) β†’ Prop
Order.Ideal.toLowerSet_injective
Mathlib.Order.Ideal
βˆ€ {P : Type u_1} [inst : LE P], Function.Injective Order.Ideal.toLowerSet
SimpleGraph.cliqueFinset_eq_empty_iff
Mathlib.Combinatorics.SimpleGraph.Clique
βˆ€ {Ξ± : Type u_1} {G : SimpleGraph Ξ±} [inst : Fintype Ξ±] [inst_1 : DecidableEq Ξ±] [inst_2 : DecidableRel G.Adj] {n : β„•}, G.cliqueFinset n = βˆ… ↔ G.CliqueFree n
LieAlgebra.IsExtension.range_eq_top
Mathlib.Algebra.Lie.Extension
βˆ€ {R : Type u_1} {N : Type u_2} {L : Type u_3} {M : Type u_4} {inst : CommRing R} {inst_1 : LieRing L} {inst_2 : LieAlgebra R L} {inst_3 : LieRing N} {inst_4 : LieAlgebra R N} {inst_5 : LieRing M} {inst_6 : LieAlgebra R M} (i : N →ₗ⁅R⁆ L) {p : L →ₗ⁅R⁆ M} [self : LieAlgebra.IsExtension i p], p.range = ⊀
CategoryTheory.OverPresheafAux.restrictedYoneda._proof_3
Mathlib.CategoryTheory.Comma.Presheaf.Basic
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] (A : CategoryTheory.Functor Cα΅’α΅– (Type u_2)) {X Y : CategoryTheory.Over A} (Ξ΅ : X ⟢ Y), CategoryTheory.CategoryStruct.comp ((CategoryTheory.Functor.id (CategoryTheory.Functor Cα΅’α΅– (Type u_2))).map Ξ΅.left) Y.hom = CategoryTheory.CategoryStruct.comp X.hom ((CategoryTheory.Functor.fromPUnit A).map Ξ΅.right)
Finset.Colex.toColex_sdiff_lt_toColex_sdiff'
Mathlib.Combinatorics.Colex
βˆ€ {Ξ± : Type u_1} [inst : PartialOrder Ξ±] {s t : Finset Ξ±} [inst_1 : DecidableEq Ξ±], toColex (s \ t) < toColex (t \ s) ↔ toColex s < toColex t
Lean.Parser.ParserResolution.alias
Lean.Parser.Extension
Lean.Parser.ParserAliasValue β†’ Lean.Parser.ParserResolution
HasSubset.noConfusion
Init.Core
{P : Sort u_1} β†’ {Ξ± : Type u} β†’ {t : HasSubset Ξ±} β†’ {Ξ±' : Type u} β†’ {t' : HasSubset Ξ±'} β†’ Ξ± = Ξ±' β†’ t ≍ t' β†’ HasSubset.noConfusionType P t t'
Lean.Lsp.FileIdent.casesOn
Lean.Server.FileSource
{motive : Lean.Lsp.FileIdent β†’ Sort u} β†’ (t : Lean.Lsp.FileIdent) β†’ ((uri : Lean.Lsp.DocumentUri) β†’ motive (Lean.Lsp.FileIdent.uri uri)) β†’ ((mod : Lean.Name) β†’ motive (Lean.Lsp.FileIdent.mod mod)) β†’ motive t
_private.Lean.Meta.LazyDiscrTree.0.Lean.Meta.LazyDiscrTree.blacklistInsertion.match_1
Lean.Meta.LazyDiscrTree
(motive : Lean.Name β†’ Sort u_1) β†’ (declName : Lean.Name) β†’ ((pre : Lean.Name) β†’ motive (pre.str "inj")) β†’ ((x : Lean.Name) β†’ motive x) β†’ motive declName
_private.Lean.Compiler.LCNF.Basic.0.Lean.Compiler.LCNF.LetValue.updateArgsImp
Lean.Compiler.LCNF.Basic
Lean.Compiler.LCNF.LetValue β†’ Array Lean.Compiler.LCNF.Arg β†’ Lean.Compiler.LCNF.LetValue
CategoryTheory.IsDiscrete.sum
Mathlib.CategoryTheory.Discrete.SumsProducts
βˆ€ (C : Type u_1) (C' : Type u_2) [inst : CategoryTheory.Category.{v_1, u_1} C] [inst_1 : CategoryTheory.Category.{v_2, u_2} C'] [CategoryTheory.IsDiscrete C] [CategoryTheory.IsDiscrete C'], CategoryTheory.IsDiscrete (C βŠ• C')
USize.toNat_sub_of_le
Init.Data.UInt.Lemmas
βˆ€ (a b : USize), b ≀ a β†’ (a - b).toNat = a.toNat - b.toNat
_private.Init.Data.Array.BinSearch.0.Array.binSearchAux._proof_3
Init.Data.Array.BinSearch
βˆ€ {Ξ± : Type u_1} (as : Array Ξ±) (lo : Fin (as.size + 1)) (hi : Fin as.size), ↑lo ≀ ↑hi β†’ Β¬(↑lo + ↑hi) / 2 < as.size β†’ False
PNat.XgcdType.flip_b
Mathlib.Data.PNat.Xgcd
βˆ€ (u : PNat.XgcdType), u.flip.b = u.a
Lean.Lsp.LeanIleanInfoParams.recOn
Lean.Data.Lsp.Internal
{motive : Lean.Lsp.LeanIleanInfoParams β†’ Sort u} β†’ (t : Lean.Lsp.LeanIleanInfoParams) β†’ ((version : β„•) β†’ (references : Lean.Lsp.ModuleRefs) β†’ (decls : Lean.Lsp.Decls) β†’ motive { version := version, references := references, decls := decls }) β†’ motive t
_private.Init.Grind.Ring.CommSolver.0.Lean.Grind.CommRing.Poly.combine_k_eq_combine._simp_1_8
Init.Grind.Ring.CommSolver
βˆ€ (m₁ mβ‚‚ : Lean.Grind.CommRing.Mon), m₁.grevlex mβ‚‚ = m₁.grevlex_k mβ‚‚
Complex.isOpen_im_lt_EReal
Mathlib.Analysis.Complex.HalfPlane
βˆ€ (x : EReal), IsOpen {z | ↑z.im < x}
CategoryTheory.Bundled.mk.noConfusion
Mathlib.CategoryTheory.ConcreteCategory.Bundled
{c : Type u β†’ Type v} β†’ {P : Sort u_1} β†’ {Ξ± : Type u} β†’ {str : autoParam (c Ξ±) CategoryTheory.Bundled.str._autoParam} β†’ {Ξ±' : Type u} β†’ {str' : autoParam (c Ξ±') CategoryTheory.Bundled.str._autoParam} β†’ { Ξ± := Ξ±, str := str } = { Ξ± := Ξ±', str := str' } β†’ (Ξ± = Ξ±' β†’ str ≍ str' β†’ P) β†’ P
Std.ExtDTreeMap.size_le_size_erase
Std.Data.ExtDTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.ExtDTreeMap Ξ± Ξ² cmp} [inst : Std.TransCmp cmp] {k : Ξ±}, t.size ≀ (t.erase k).size + 1
riemannZeta.eq_1
Mathlib.NumberTheory.LSeries.RiemannZeta
riemannZeta = HurwitzZeta.hurwitzZetaEven 0
CategoryTheory.ProjectivePresentation.noConfusionType
Mathlib.CategoryTheory.Preadditive.Projective.Basic
Sort u_1 β†’ {C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {X : C} β†’ CategoryTheory.ProjectivePresentation X β†’ {C' : Type u} β†’ [inst' : CategoryTheory.Category.{v, u} C'] β†’ {X' : C'} β†’ CategoryTheory.ProjectivePresentation X' β†’ Sort u_1
HahnSeries.instAddGroup._proof_8
Mathlib.RingTheory.HahnSeries.Addition
βˆ€ {Ξ“ : Type u_1} {R : Type u_2} [inst : PartialOrder Ξ“] [inst_1 : AddGroup R] (n : β„•) (x : HahnSeries Ξ“ R), Int.negSucc n β€’ x = -(↑n.succ β€’ x)
_private.Mathlib.MeasureTheory.Measure.HasOuterApproxClosed.0.MeasureTheory.measure_of_cont_bdd_of_tendsto_filter_indicator._simp_1_1
Mathlib.MeasureTheory.Measure.HasOuterApproxClosed
βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±}, MeasurableSet Set.univ = True
Filter.comk.congr_simp
Mathlib.Order.Filter.Basic
βˆ€ {Ξ± : Type u_1} (p p_1 : Set Ξ± β†’ Prop) (e_p : p = p_1) (he : p βˆ…) (hmono : βˆ€ (t : Set Ξ±), p t β†’ βˆ€ s βŠ† t, p s) (hunion : βˆ€ (s : Set Ξ±), p s β†’ βˆ€ (t : Set Ξ±), p t β†’ p (s βˆͺ t)), Filter.comk p he hmono hunion = Filter.comk p_1 β‹― β‹― β‹―
CategoryTheory.Pretriangulated.Triangle.epi₃
Mathlib.CategoryTheory.Triangulated.Pretriangulated
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Limits.HasZeroObject C] [inst_2 : CategoryTheory.HasShift C β„€] [inst_3 : CategoryTheory.Preadditive C] [inst_4 : βˆ€ (n : β„€), (CategoryTheory.shiftFunctor C n).Additive] [hC : CategoryTheory.Pretriangulated C], βˆ€ T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles, T.mor₁ = 0 β†’ CategoryTheory.Epi T.mor₃
AddSemigroupIdeal.fg_iff
Mathlib.Algebra.Group.Ideal
βˆ€ {M : Type u_1} [inst : Add M] {I : AddSemigroupIdeal M}, I.FG ↔ βˆƒ s, I = AddSemigroupIdeal.closure ↑s
Std.ExtTreeMap.isEmpty_eq_size_beq_zero
Std.Data.ExtTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.ExtTreeMap Ξ± Ξ² cmp}, t.isEmpty = (t.size == 0)
NormedAddGroupHom.incl._proof_3
Mathlib.Analysis.Normed.Group.Hom
βˆ€ {V : Type u_1} [inst : SeminormedAddCommGroup V] (s : AddSubgroup V), βˆƒ C, βˆ€ (v : β†₯s), ‖↑vβ€– ≀ C * β€–vβ€–
CategoryTheory.BundledHom.casesOn
Mathlib.CategoryTheory.ConcreteCategory.BundledHom
{c : Type u β†’ Type u} β†’ {hom : ⦃α Ξ² : Type u⦄ β†’ c Ξ± β†’ c Ξ² β†’ Type u} β†’ {motive : CategoryTheory.BundledHom hom β†’ Sort u_1} β†’ (t : CategoryTheory.BundledHom hom) β†’ ((toFun : {Ξ± Ξ² : Type u} β†’ (IΞ± : c Ξ±) β†’ (IΞ² : c Ξ²) β†’ hom IΞ± IΞ² β†’ Ξ± β†’ Ξ²) β†’ (id : {Ξ± : Type u} β†’ (I : c Ξ±) β†’ hom I I) β†’ (comp : {Ξ± Ξ² Ξ³ : Type u} β†’ (IΞ± : c Ξ±) β†’ (IΞ² : c Ξ²) β†’ (IΞ³ : c Ξ³) β†’ hom IΞ² IΞ³ β†’ hom IΞ± IΞ² β†’ hom IΞ± IΞ³) β†’ (hom_ext : βˆ€ {Ξ± Ξ² : Type u} (IΞ± : c Ξ±) (IΞ² : c Ξ²), Function.Injective (toFun IΞ± IΞ²)) β†’ (id_toFun : βˆ€ {Ξ± : Type u} (I : c Ξ±), toFun I I (id I) = _root_.id) β†’ (comp_toFun : βˆ€ {Ξ± Ξ² Ξ³ : Type u} (IΞ± : c Ξ±) (IΞ² : c Ξ²) (IΞ³ : c Ξ³) (f : hom IΞ± IΞ²) (g : hom IΞ² IΞ³), toFun IΞ± IΞ³ (comp IΞ± IΞ² IΞ³ g f) = toFun IΞ² IΞ³ g ∘ toFun IΞ± IΞ² f) β†’ motive { toFun := toFun, id := id, comp := comp, hom_ext := hom_ext, id_toFun := id_toFun, comp_toFun := comp_toFun }) β†’ motive t
Part.Mem
Mathlib.Data.Part
{Ξ± : Type u_1} β†’ Part Ξ± β†’ Ξ± β†’ Prop
Lean.Server.Watchdog.WorkerEvent.casesOn
Lean.Server.Watchdog
{motive : Lean.Server.Watchdog.WorkerEvent β†’ Sort u} β†’ (t : Lean.Server.Watchdog.WorkerEvent) β†’ motive Lean.Server.Watchdog.WorkerEvent.terminated β†’ motive Lean.Server.Watchdog.WorkerEvent.importsChanged β†’ ((exitCode : UInt32) β†’ motive (Lean.Server.Watchdog.WorkerEvent.crashed exitCode)) β†’ ((e : IO.Error) β†’ motive (Lean.Server.Watchdog.WorkerEvent.ioError e)) β†’ motive t
Acc.ndrec
Init.WF
{Ξ± : Sort u2} β†’ {r : Ξ± β†’ Ξ± β†’ Prop} β†’ {C : Ξ± β†’ Sort u1} β†’ ((x : Ξ±) β†’ (βˆ€ (y : Ξ±), r y x β†’ Acc r y) β†’ ((y : Ξ±) β†’ r y x β†’ C y) β†’ C x) β†’ {a : Ξ±} β†’ Acc r a β†’ C a
_private.Lean.Elab.DeclNameGen.0.Lean.Elab.Command.NameGen.MkNameM
Lean.Elab.DeclNameGen
Type β†’ Type
Std.DTreeMap.Const.get!_modify_self
Std.Data.DTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} [Std.TransCmp cmp] {Ξ² : Type v} {t : Std.DTreeMap Ξ± (fun x => Ξ²) cmp} {k : Ξ±} [inst : Inhabited Ξ²] {f : Ξ² β†’ Ξ²}, Std.DTreeMap.Const.get! (Std.DTreeMap.Const.modify t k f) k = (Option.map f (Std.DTreeMap.Const.get? t k)).get!
Prod.instCoheytingAlgebra._proof_2
Mathlib.Order.Heyting.Basic
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : CoheytingAlgebra Ξ±] [inst_1 : CoheytingAlgebra Ξ²] (a : Ξ± Γ— Ξ²), ⊀ \ a = οΏ’a
SSet.StrictSegal.ofIsStrictSegal._proof_2
Mathlib.AlgebraicTopology.SimplicialSet.StrictSegal
βˆ€ (X : SSet) [inst : X.IsStrictSegal] (n : β„•), (Equiv.ofBijective (X.spine n) β‹―).invFun ∘ X.spine n = id
CoalgHom.mk._flat_ctor
Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} β†’ {A : Type u_2} β†’ {B : Type u_3} β†’ [inst : CommSemiring R] β†’ [inst_1 : AddCommMonoid A] β†’ [inst_2 : Module R A] β†’ [inst_3 : AddCommMonoid B] β†’ [inst_4 : Module R B] β†’ [inst_5 : CoalgebraStruct R A] β†’ [inst_6 : CoalgebraStruct R B] β†’ (toFun : A β†’ B) β†’ (map_add' : βˆ€ (x y : A), toFun (x + y) = toFun x + toFun y) β†’ (map_smul' : βˆ€ (m : R) (x : A), toFun (m β€’ x) = (RingHom.id R) m β€’ toFun x) β†’ CoalgebraStruct.counit βˆ˜β‚— { toFun := toFun, map_add' := map_add', map_smul' := map_smul' } = CoalgebraStruct.counit β†’ TensorProduct.map { toFun := toFun, map_add' := map_add', map_smul' := map_smul' } { toFun := toFun, map_add' := map_add', map_smul' := map_smul' } βˆ˜β‚— CoalgebraStruct.comul = CoalgebraStruct.comul βˆ˜β‚— { toFun := toFun, map_add' := map_add', map_smul' := map_smul' } β†’ A β†’β‚—c[R] B
vectorSpan_mono
Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Defs
βˆ€ (k : Type u_1) {V : Type u_2} {P : Type u_3} [inst : Ring k] [inst_1 : AddCommGroup V] [inst_2 : Module k V] [inst_3 : AddTorsor V P] {s₁ sβ‚‚ : Set P}, s₁ βŠ† sβ‚‚ β†’ vectorSpan k s₁ ≀ vectorSpan k sβ‚‚
BoxIntegral.Prepartition.mk.sizeOf_spec
Mathlib.Analysis.BoxIntegral.Partition.Basic
βˆ€ {ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [inst : SizeOf ΞΉ] (boxes : Finset (BoxIntegral.Box ΞΉ)) (le_of_mem' : βˆ€ J ∈ boxes, J ≀ I) (pairwiseDisjoint : (↑boxes).Pairwise (Function.onFun Disjoint BoxIntegral.Box.toSet)), sizeOf { boxes := boxes, le_of_mem' := le_of_mem', pairwiseDisjoint := pairwiseDisjoint } = 1 + sizeOf boxes
Lean.Name.str._impl
Init.Prelude
UInt64 β†’ Lean.Name β†’ String β†’ Lean.Name._impl