name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
AddSubmonoid.matrix._proof_1
|
Mathlib.Data.Matrix.Basic
|
β {m : Type u_1} {n : Type u_2} {A : Type u_3} [inst : AddMonoid A] (S : AddSubmonoid A) {a b : Matrix m n A},
a β (βS).matrix β b β (βS).matrix β β (i : m) (j : n), a i j + b i j β S
|
CategoryTheory.Pretriangulated.Triangle.shiftFunctorZero_hom_app_homβ
|
Mathlib.CategoryTheory.Triangulated.TriangleShift
|
β (C : Type u) [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C]
[inst_2 : CategoryTheory.HasShift C β€] (X : CategoryTheory.Pretriangulated.Triangle C),
((CategoryTheory.Pretriangulated.Triangle.shiftFunctorZero C).hom.app X).homβ =
(CategoryTheory.shiftFunctorZero C β€).hom.app X.objβ
|
IsCyclotomicExtension.Rat.ramificationIdxIn_eq
|
Mathlib.NumberTheory.NumberField.Cyclotomic.Ideal
|
β (n : β) {m p k : β} [hp : Fact (Nat.Prime p)] (K : Type u_1) [inst : Field K] [inst_1 : NumberField K]
[IsCyclotomicExtension {n} β K],
n = p ^ (k + 1) * m β Β¬p β£ m β (Ideal.span {βp}).ramificationIdxIn (NumberField.RingOfIntegers K) = p ^ k * (p - 1)
|
_private.Std.Data.Internal.List.Associative.0.Std.Internal.List.Option.map_dmap
|
Std.Data.Internal.List.Associative
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} (x : Option Ξ±) (f : (a : Ξ±) β x = some a β Ξ²) (g : Ξ² β Ξ³),
Option.map g (Std.Internal.List.Option.dmapβ x f) = Std.Internal.List.Option.dmapβΒΉ x fun a h => g (f a h)
|
Lean.Grind.CommRing.Mon.beq'
|
Init.Grind.Ring.CommSolver
|
Lean.Grind.CommRing.Mon β Lean.Grind.CommRing.Mon β Bool
|
Polynomial.natDegree_multiset_prod_of_monic
|
Mathlib.Algebra.Polynomial.BigOperators
|
β {R : Type u} [inst : CommSemiring R] (t : Multiset (Polynomial R)),
(β f β t, f.Monic) β t.prod.natDegree = (Multiset.map Polynomial.natDegree t).sum
|
CategoryTheory.Bicategory.rightUnitor_comp_inv
|
Mathlib.CategoryTheory.Bicategory.Basic
|
β {B : Type u} [inst : CategoryTheory.Bicategory B] {a b c : B} (f : a βΆ b) (g : b βΆ c),
(CategoryTheory.Bicategory.rightUnitor (CategoryTheory.CategoryStruct.comp f g)).inv =
CategoryTheory.CategoryStruct.comp
(CategoryTheory.Bicategory.whiskerLeft f (CategoryTheory.Bicategory.rightUnitor g).inv)
(CategoryTheory.Bicategory.associator f g (CategoryTheory.CategoryStruct.id c)).inv
|
ISize.toBitVec_or
|
Init.Data.SInt.Bitwise
|
β (a b : ISize), (a ||| b).toBitVec = a.toBitVec ||| b.toBitVec
|
Mathlib.Tactic.BicategoryLike.HorizontalComp.cons.sizeOf_spec
|
Mathlib.Tactic.CategoryTheory.Coherence.Normalize
|
β (e : Mathlib.Tactic.BicategoryLike.Morβ) (Ξ· : Mathlib.Tactic.BicategoryLike.WhiskerRight)
(Ξ·s : Mathlib.Tactic.BicategoryLike.HorizontalComp),
sizeOf (Mathlib.Tactic.BicategoryLike.HorizontalComp.cons e Ξ· Ξ·s) = 1 + sizeOf e + sizeOf Ξ· + sizeOf Ξ·s
|
Std.DTreeMap.Raw.instInhabited
|
Std.Data.DTreeMap.Raw.Basic
|
{Ξ± : Type u} β {Ξ² : Ξ± β Type v} β {cmp : Ξ± β Ξ± β Ordering} β Inhabited (Std.DTreeMap.Raw Ξ± Ξ² cmp)
|
AlgCat.instCategory._proof_1
|
Mathlib.Algebra.Category.AlgCat.Basic
|
β (R : Type u_2) [inst : CommRing R] {X Y : AlgCat R} (f : X.Hom Y),
{ hom' := f.hom'.comp { hom' := AlgHom.id R βX }.hom' } = f
|
CategoryTheory.MonoidalCategory.MonoidalRightAction.actionOfMonoidalFunctorToEndofunctor._proof_14
|
Mathlib.CategoryTheory.Monoidal.Action.End
|
β {C : Type u_2} {D : Type u_4} [inst : CategoryTheory.Category.{u_1, u_2} C]
[inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.Category.{u_3, u_4} D]
(F : CategoryTheory.Functor C (CategoryTheory.Functor D D)) [inst_3 : F.Monoidal] (c : C) {c' c'' : C} (f : c' βΆ c'')
(d : D),
(F.map (CategoryTheory.MonoidalCategoryStruct.whiskerLeft c f)).app d =
CategoryTheory.CategoryStruct.comp ((CategoryTheory.Functor.OplaxMonoidal.Ξ΄ F c c').app d)
(CategoryTheory.CategoryStruct.comp ((F.map f).app ((F.obj c).obj d))
((CategoryTheory.Functor.LaxMonoidal.ΞΌ F c c'').app d))
|
ContinuousMonoidHom.compLeft._proof_1
|
Mathlib.Topology.Algebra.Group.CompactOpen
|
β {A : Type u_1} {B : Type u_3} (E : Type u_2) [inst : Monoid A] [inst_1 : Monoid B] [inst_2 : CommGroup E]
[inst_3 : TopologicalSpace A] [inst_4 : TopologicalSpace B] [inst_5 : TopologicalSpace E]
[inst_6 : IsTopologicalGroup E] (f : A ββ* B), ContinuousMonoidHom.comp 1 f = ContinuousMonoidHom.comp 1 f
|
Finsupp.Lex.wellFounded
|
Mathlib.Data.Finsupp.WellFounded
|
β {Ξ± : Type u_1} {N : Type u_2} [inst : Zero N] {r : Ξ± β Ξ± β Prop} {s : N β N β Prop},
(β β¦n : Nβ¦, Β¬s n 0) β WellFounded s β WellFounded (rαΆ β fun x1 x2 => x1 β x2) β WellFounded (Finsupp.Lex r s)
|
Lean.Elab.Tactic.Conv.evalUnfold
|
Lean.Elab.Tactic.Conv.Unfold
|
Lean.Elab.Tactic.Tactic
|
ENNReal.add_lt_add_iff_right
|
Mathlib.Data.ENNReal.Operations
|
β {a b c : ENNReal}, a β β€ β (b + a < c + a β b < c)
|
PSigma.Lex.orderTop._proof_1
|
Mathlib.Data.PSigma.Order
|
β {ΞΉ : Type u_1} {Ξ± : ΞΉ β Type u_2} [inst : PartialOrder ΞΉ] [inst_1 : OrderTop ΞΉ] [inst_2 : (i : ΞΉ) β Preorder (Ξ± i)]
[inst_3 : OrderTop (Ξ± β€)] (a : ΞΉ) (b : Ξ± a), β¨a, bβ© β€ β¨β€, β€β©
|
Std.DTreeMap.Internal.Unit.RioSliceData._sizeOf_inst
|
Std.Data.DTreeMap.Internal.Zipper
|
(Ξ± : Type u) β {inst : Ord Ξ±} β [SizeOf Ξ±] β SizeOf (Std.DTreeMap.Internal.Unit.RioSliceData Ξ±)
|
Std.ExtDTreeMap.maxKeyD_le
|
Std.Data.ExtDTreeMap.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {cmp : Ξ± β Ξ± β Ordering} {t : Std.ExtDTreeMap Ξ± Ξ² cmp} [inst : Std.TransCmp cmp],
t β β
β β {k fallback : Ξ±}, (cmp (t.maxKeyD fallback) k).isLE = true β β k' β t, (cmp k' k).isLE = true
|
Set.subset_symmDiff_union_symmDiff_left
|
Mathlib.Data.Set.SymmDiff
|
β {Ξ± : Type u} {s t u : Set Ξ±}, Disjoint s t β u β symmDiff s u βͺ symmDiff t u
|
HomologicalComplex.extend.d_eq
|
Mathlib.Algebra.Homology.Embedding.Extend
|
β {ΞΉ : Type u_1} {c : ComplexShape ΞΉ} {C : Type u_3} [inst : CategoryTheory.Category.{v_1, u_3} C]
[inst_1 : CategoryTheory.Limits.HasZeroObject C] [inst_2 : CategoryTheory.Limits.HasZeroMorphisms C]
(K : HomologicalComplex C c) {i j : Option ΞΉ} {a b : ΞΉ} (hi : i = some a) (hj : j = some b),
HomologicalComplex.extend.d K i j =
CategoryTheory.CategoryStruct.comp (HomologicalComplex.extend.XIso K hi).hom
(CategoryTheory.CategoryStruct.comp (K.d a b) (HomologicalComplex.extend.XIso K hj).inv)
|
ContinuousMap.tendsto_iff_tendstoLocallyUniformly
|
Mathlib.Topology.UniformSpace.CompactConvergence
|
β {Ξ± : Type uβ} {Ξ² : Type uβ} [inst : TopologicalSpace Ξ±] [inst_1 : UniformSpace Ξ²] {f : C(Ξ±, Ξ²)} {ΞΉ : Type uβ}
{p : Filter ΞΉ} {F : ΞΉ β C(Ξ±, Ξ²)} [WeaklyLocallyCompactSpace Ξ±],
Filter.Tendsto F p (nhds f) β TendstoLocallyUniformly (fun i a => (F i) a) (βf) p
|
CompletelyRegularSpace.mk
|
Mathlib.Topology.Separation.CompletelyRegular
|
β {X : Type u} [inst : TopologicalSpace X],
(β (x : X) (K : Set X), IsClosed K β x β K β β f, Continuous f β§ f x = 0 β§ Set.EqOn f 1 K) β CompletelyRegularSpace X
|
BitVec.carry_extractLsb'_eq_carry
|
Init.Data.BitVec.Bitblast
|
β {w i len : β},
i < len β
β {x y : BitVec w} {b : Bool},
BitVec.carry i (BitVec.extractLsb' 0 len x) (BitVec.extractLsb' 0 len y) b = BitVec.carry i x y b
|
CategoryTheory.Bicategory.InducedBicategory.bicategory._proof_2
|
Mathlib.CategoryTheory.Bicategory.InducedBicategory
|
β {B : Type u_1} {C : Type u_2} [inst : CategoryTheory.Bicategory C] {F : B β C}
{a b c : CategoryTheory.Bicategory.InducedBicategory C F} (f : a βΆ b) (g : b βΆ c),
CategoryTheory.Bicategory.InducedBicategory.mkHomβ
(CategoryTheory.Bicategory.whiskerLeft f.hom (CategoryTheory.CategoryStruct.id g).hom) =
CategoryTheory.CategoryStruct.id (CategoryTheory.CategoryStruct.comp f g)
|
Flag.ofIsMaxChain._proof_2
|
Mathlib.Order.Preorder.Chain
|
β {Ξ± : Type u_1} [inst : LE Ξ±] (c : Set Ξ±),
IsMaxChain (fun x1 x2 => x1 β€ x2) c β β β¦t : Set Ξ±β¦, IsChain (fun x1 x2 => x1 β€ x2) t β c β t β c = t
|
Mathlib.Tactic.IntervalCases.Bound._sizeOf_1
|
Mathlib.Tactic.IntervalCases
|
Mathlib.Tactic.IntervalCases.Bound β β
|
TopCommRingCat.isCommRing
|
Mathlib.Topology.Category.TopCommRingCat
|
(self : TopCommRingCat) β CommRing self.Ξ±
|
mulActionSphereClosedBall._proof_2
|
Mathlib.Analysis.Normed.Module.Ball.Action
|
β {π : Type u_2} {E : Type u_1} [inst : NormedField π] [inst_1 : SeminormedAddCommGroup E] [inst_2 : NormedSpace π E]
{r : β} (x : β(Metric.closedBall 0 r)), 1 β’ x = x
|
Submonoid.map.congr_simp
|
Mathlib.Algebra.Group.Submonoid.Operations
|
β {M : Type u_1} {N : Type u_2} [inst : MulOneClass M] [inst_1 : MulOneClass N] {F : Type u_4} [inst_2 : FunLike F M N]
[mc : MonoidHomClass F M N] (f f_1 : F),
f = f_1 β β (S S_1 : Submonoid M), S = S_1 β Submonoid.map f S = Submonoid.map f_1 S_1
|
Std.Iterators.Iter.allM
|
Init.Data.Iterators.Consumers.Loop
|
{Ξ± Ξ² : Type w} β
{m : Type β Type w'} β
[Monad m] β
[inst : Std.Iterators.Iterator Ξ± Id Ξ²] β [Std.Iterators.IteratorLoop Ξ± Id m] β (Ξ² β m Bool) β Std.Iter Ξ² β m Bool
|
CategoryTheory.Limits.idZeroEquivIsoZero_apply_hom
|
Mathlib.CategoryTheory.Limits.Shapes.ZeroMorphisms
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Limits.HasZeroObject C]
[inst_2 : CategoryTheory.Limits.HasZeroMorphisms C] (X : C) (h : CategoryTheory.CategoryStruct.id X = 0),
((CategoryTheory.Limits.idZeroEquivIsoZero X) h).hom = 0
|
divisionRingOfFiniteDimensional._proof_15
|
Mathlib.LinearAlgebra.FiniteDimensional.Basic
|
β (F : Type u_2) (K : Type u_1) [inst : Field F] [inst_1 : Ring K] [inst_2 : IsDomain K] [inst_3 : Algebra F K]
[inst_4 : FiniteDimensional F K], (if H : 0 = 0 then 0 else Classical.choose β―) = 0
|
CentroidHom.instFunLike._proof_1
|
Mathlib.Algebra.Ring.CentroidHom
|
β {Ξ± : Type u_1} [inst : NonUnitalNonAssocSemiring Ξ±] (f g : CentroidHom Ξ±),
(fun f => (βf.toAddMonoidHom).toFun) f = (fun f => (βf.toAddMonoidHom).toFun) g β f = g
|
CommGroupWithZero.ctorIdx
|
Mathlib.Algebra.GroupWithZero.Defs
|
{Gβ : Type u_2} β CommGroupWithZero Gβ β β
|
HomologicalComplex.units_smul_f_apply
|
Mathlib.Algebra.Homology.Linear
|
β {R : Type u_1} [inst : Semiring R] {C : Type u_2} [inst_1 : CategoryTheory.Category.{v_1, u_2} C]
[inst_2 : CategoryTheory.Preadditive C] [inst_3 : CategoryTheory.Linear R C] {ΞΉ : Type u_4} {c : ComplexShape ΞΉ}
{X Y : HomologicalComplex C c} (r : RΛ£) (f : X βΆ Y) (n : ΞΉ), (r β’ f).f n = r β’ f.f n
|
CategoryTheory.Limits.IsImage.lift
|
Mathlib.CategoryTheory.Limits.Shapes.Images
|
{C : Type u} β
[inst : CategoryTheory.Category.{v, u} C] β
{X Y : C} β
{f : X βΆ Y} β
{F : CategoryTheory.Limits.MonoFactorisation f} β
CategoryTheory.Limits.IsImage F β (F' : CategoryTheory.Limits.MonoFactorisation f) β F.I βΆ F'.I
|
Std.Sat.AIG.Entrypoint.ctorIdx
|
Std.Sat.AIG.Basic
|
{Ξ± : Type} β {inst : DecidableEq Ξ±} β {inst_1 : Hashable Ξ±} β Std.Sat.AIG.Entrypoint Ξ± β β
|
Lean.Unhygienic.Context.mk.inj
|
Lean.Hygiene
|
β {ref : Lean.Syntax} {scope : Lean.MacroScope} {ref_1 : Lean.Syntax} {scope_1 : Lean.MacroScope},
{ ref := ref, scope := scope } = { ref := ref_1, scope := scope_1 } β ref = ref_1 β§ scope = scope_1
|
Std.DHashMap.insert_eq_insert
|
Std.Data.DHashMap.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.DHashMap Ξ± Ξ²} {p : (a : Ξ±) Γ Ξ² a},
insert p m = m.insert p.fst p.snd
|
Std.DHashMap.Equiv.symm
|
Std.Data.DHashMap.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {mβ mβ : Std.DHashMap Ξ± Ξ²}, mβ.Equiv mβ β mβ.Equiv mβ
|
UInt8.toFin_inj
|
Init.Data.UInt.Lemmas
|
β {a b : UInt8}, a.toFin = b.toFin β a = b
|
Set.encard_exchange'
|
Mathlib.Data.Set.Card
|
β {Ξ± : Type u_1} {s : Set Ξ±} {a b : Ξ±}, a β s β b β s β (insert a s \ {b}).encard = s.encard
|
_private.Init.Data.FloatArray.Basic.0.FloatArray.forIn.loop._proof_3
|
Init.Data.FloatArray.Basic
|
β (as : FloatArray) (i : β), as.size - 1 < as.size β as.size - 1 - i < as.size
|
Matrix.self_mul_conjTranspose_mulVec_eq_zero
|
Mathlib.LinearAlgebra.Matrix.DotProduct
|
β {m : Type u_1} {n : Type u_2} {R : Type u_4} [inst : Fintype m] [inst_1 : Fintype n] [inst_2 : PartialOrder R]
[inst_3 : NonUnitalRing R] [inst_4 : StarRing R] [StarOrderedRing R] [NoZeroDivisors R] (A : Matrix m n R)
(v : m β R), (A * A.conjTranspose).mulVec v = 0 β A.conjTranspose.mulVec v = 0
|
Rat.le_coe_toNNRat
|
Mathlib.Data.NNRat.Defs
|
β (q : β), q β€ βq.toNNRat
|
_private.Init.Grind.Ordered.Rat.0.Lean.Grind.instOrderedAddRat._simp_1
|
Init.Grind.Ordered.Rat
|
β {a b c : β}, (c + a β€ c + b) = (a β€ b)
|
Aesop.RulePattern.mk
|
Aesop.RulePattern
|
Lean.Meta.AbstractMVarsResult β Array (Option β) β Array (Option β) β Array Lean.Meta.DiscrTree.Key β Aesop.RulePattern
|
_private.Std.Time.Format.Basic.0.Std.Time.formatMarkerShort.match_1
|
Std.Time.Format.Basic
|
(motive : Std.Time.HourMarker β Sort u_1) β
(marker : Std.Time.HourMarker) β
(Unit β motive Std.Time.HourMarker.am) β (Unit β motive Std.Time.HourMarker.pm) β motive marker
|
_private.Mathlib.CategoryTheory.Limits.Types.Images.0.CategoryTheory.Limits.Types.surjective_Ο_app_zero_of_surjective_map_aux.match_1_1
|
Mathlib.CategoryTheory.Limits.Types.Images
|
(motive : βα΅α΅ β Sort u_1) β (x : βα΅α΅) β ((n : β) β motive (Opposite.op n)) β motive x
|
WeierstrassCurve.toCharTwoJNeZeroNF
|
Mathlib.AlgebraicGeometry.EllipticCurve.NormalForms
|
{F : Type u_2} β [inst : Field F] β (W : WeierstrassCurve F) β W.aβ β 0 β WeierstrassCurve.VariableChange F
|
Lean.Server.FileWorker.FileSetupResultKind._sizeOf_1
|
Lean.Server.FileWorker.SetupFile
|
Lean.Server.FileWorker.FileSetupResultKind β β
|
Nat.psub
|
Mathlib.Data.Nat.PSub
|
β β β β Option β
|
Quiver.Path.addWeightOfEPs_cons
|
Mathlib.Combinatorics.Quiver.Path.Weight
|
β {V : Type u_1} [inst : Quiver V] {R : Type u_2} [inst_1 : AddMonoid R] (w : V β V β R) {a b c : V}
(p : Quiver.Path a b) (e : b βΆ c), Quiver.Path.addWeightOfEPs w (p.cons e) = Quiver.Path.addWeightOfEPs w p + w b c
|
AffineEquiv.equivLike
|
Mathlib.LinearAlgebra.AffineSpace.AffineEquiv
|
{k : Type u_1} β
{Pβ : Type u_2} β
{Pβ : Type u_3} β
{Vβ : Type u_6} β
{Vβ : Type u_7} β
[inst : Ring k] β
[inst_1 : AddCommGroup Vβ] β
[inst_2 : AddCommGroup Vβ] β
[inst_3 : Module k Vβ] β
[inst_4 : Module k Vβ] β
[inst_5 : AddTorsor Vβ Pβ] β [inst_6 : AddTorsor Vβ Pβ] β EquivLike (Pβ βα΅[k] Pβ) Pβ Pβ
|
_private.Lean.Server.FileWorker.RequestHandling.0.Lean.Server.FileWorker.findGoalsAt?.getPositions
|
Lean.Server.FileWorker.RequestHandling
|
Lean.Syntax β Option (String.Pos.Raw Γ String.Pos.Raw Γ String.Pos.Raw)
|
UpperSet.mem_iInf_iff
|
Mathlib.Order.UpperLower.CompleteLattice
|
β {Ξ± : Type u_1} {ΞΉ : Sort u_4} [inst : LE Ξ±] {a : Ξ±} {f : ΞΉ β UpperSet Ξ±}, a β β¨
i, f i β β i, a β f i
|
ModularGroup.denom_apply
|
Mathlib.Analysis.Complex.UpperHalfPlane.MoebiusAction
|
β (g : Matrix.SpecialLinearGroup (Fin 2) β€) (z : UpperHalfPlane),
UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) g)) βz =
β(βg 1 0) * βz + β(βg 1 1)
|
Nat.lt.base
|
Init.Data.Nat.Basic
|
β (n : β), n < n.succ
|
finprod_apply
|
Mathlib.Algebra.BigOperators.Finprod
|
β {N : Type u_6} [inst : CommMonoid N] {Ξ± : Type u_7} {ΞΉ : Type u_8} {f : ΞΉ β Ξ± β N},
(Function.mulSupport f).Finite β β (a : Ξ±), (βαΆ (i : ΞΉ), f i) a = βαΆ (i : ΞΉ), f i a
|
_private.Batteries.Data.RBMap.WF.0.Batteries.RBNode.Ordered.ins.match_1_1
|
Batteries.Data.RBMap.WF
|
β {Ξ± : Type u_1} {cmp : Ξ± β Ξ± β Ordering} (motive : (x : Batteries.RBNode Ξ±) β Batteries.RBNode.Ordered cmp x β Prop)
(x : Batteries.RBNode Ξ±) (x_1 : Batteries.RBNode.Ordered cmp x),
(β (x : Batteries.RBNode.Ordered cmp Batteries.RBNode.nil), motive Batteries.RBNode.nil x) β
(β (a : Batteries.RBNode Ξ±) (y : Ξ±) (b : Batteries.RBNode Ξ±)
(ay : Batteries.RBNode.All (fun x => Batteries.RBNode.cmpLT cmp x y) a)
(yb : Batteries.RBNode.All (fun x => Batteries.RBNode.cmpLT cmp y x) b) (ha : Batteries.RBNode.Ordered cmp a)
(hb : Batteries.RBNode.Ordered cmp b), motive (Batteries.RBNode.node Batteries.RBColor.red a y b) β―) β
(β (a : Batteries.RBNode Ξ±) (y : Ξ±) (b : Batteries.RBNode Ξ±)
(ay : Batteries.RBNode.All (fun x => Batteries.RBNode.cmpLT cmp x y) a)
(yb : Batteries.RBNode.All (fun x => Batteries.RBNode.cmpLT cmp y x) b) (ha : Batteries.RBNode.Ordered cmp a)
(hb : Batteries.RBNode.Ordered cmp b), motive (Batteries.RBNode.node Batteries.RBColor.black a y b) β―) β
motive x x_1
|
_private.Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph.0.SimpleGraph.Walk.IsCycle.neighborSet_toSubgraph_endpoint._simp_1_5
|
Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
|
β {Ξ± : Type u_1} {p p' : Ξ± Γ Ξ±}, (Sym2.mk p = Sym2.mk p') = Sym2.Rel Ξ± p p'
|
AddUnits.neg_mul_left
|
Mathlib.Algebra.Ring.Invertible
|
β {R : Type u_1} [inst : NonUnitalNonAssocSemiring R] {x : AddUnits R} {y : R}, -x.mulLeft y = (-x).mulLeft y
|
_private.Lean.Data.RBMap.0.Lean.RBMap.erase.match_1
|
Lean.Data.RBMap
|
{Ξ± : Type u_1} β
{Ξ² : Type u_2} β
{cmp : Ξ± β Ξ± β Ordering} β
(motive : Lean.RBMap Ξ± Ξ² cmp β Ξ± β Sort u_3) β
(x : Lean.RBMap Ξ± Ξ² cmp) β
(x_1 : Ξ±) β
((t : Lean.RBNode Ξ± fun x => Ξ²) β (w : Lean.RBNode.WellFormed cmp t) β (k : Ξ±) β motive β¨t, wβ© k) β
motive x x_1
|
MeasureTheory.weightedSMul_union'
|
Mathlib.MeasureTheory.Integral.Bochner.L1
|
β {Ξ± : Type u_1} {F : Type u_3} [inst : NormedAddCommGroup F] [inst_1 : NormedSpace β F] {m : MeasurableSpace Ξ±}
{ΞΌ : MeasureTheory.Measure Ξ±} (s t : Set Ξ±),
MeasurableSet t β
ΞΌ s β β€ β
ΞΌ t β β€ β
Disjoint s t β
MeasureTheory.weightedSMul ΞΌ (s βͺ t) = MeasureTheory.weightedSMul ΞΌ s + MeasureTheory.weightedSMul ΞΌ t
|
AlgebraicGeometry.IsAffine.casesOn
|
Mathlib.AlgebraicGeometry.AffineScheme
|
{X : AlgebraicGeometry.Scheme} β
{motive : AlgebraicGeometry.IsAffine X β Sort u} β
(t : AlgebraicGeometry.IsAffine X) β ((affine : CategoryTheory.IsIso X.toSpecΞ) β motive β―) β motive t
|
_private.Mathlib.Data.Finset.Card.0.Finset.exists_subset_or_subset_of_two_mul_lt_card._proof_1_3
|
Mathlib.Data.Finset.Card
|
β {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {X Y : Finset Ξ±} {n : β},
2 * n < (X βͺ Y).card β (X βͺ Y).card = X.card + (Y \ X).card β n < X.card β¨ n < (Y \ X).card
|
Std.ExtDHashMap.Const.getD_union
|
Std.Data.ExtDHashMap.Lemmas
|
β {Ξ± : Type u} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {Ξ² : Type v} {mβ mβ : Std.ExtDHashMap Ξ± fun x => Ξ²} [inst : EquivBEq Ξ±]
[inst_1 : LawfulHashable Ξ±] {k : Ξ±} {fallback : Ξ²},
Std.ExtDHashMap.Const.getD (mβ.union mβ) k fallback =
Std.ExtDHashMap.Const.getD mβ k (Std.ExtDHashMap.Const.getD mβ k fallback)
|
Filter.prod_mono_right
|
Mathlib.Order.Filter.Prod
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} (f : Filter Ξ±) {gβ gβ : Filter Ξ²}, gβ β€ gβ β f ΓΛ’ gβ β€ f ΓΛ’ gβ
|
Lean.Meta.Grind.Order.Weight.casesOn
|
Lean.Meta.Tactic.Grind.Order.Types
|
{motive : Lean.Meta.Grind.Order.Weight β Sort u} β
(t : Lean.Meta.Grind.Order.Weight) β ((k : β€) β (strict : Bool) β motive { k := k, strict := strict }) β motive t
|
_private.Mathlib.NumberTheory.NumberField.CanonicalEmbedding.NormLeOne.0.NumberField.mixedEmbedding.fundamentalCone.expMap_sum._simp_1_1
|
Mathlib.NumberTheory.NumberField.CanonicalEmbedding.NormLeOne
|
β {Ξ± : Type u_1} (s : Finset Ξ±) (f : Ξ± β β), β x β s, Real.exp (f x) = Real.exp (β x β s, f x)
|
ONote.split._sunfold
|
Mathlib.SetTheory.Ordinal.Notation
|
ONote β ONote Γ β
|
Lean.Doc.DocScope.local.sizeOf_spec
|
Lean.Elab.DocString.Builtin.Scopes
|
sizeOf Lean.Doc.DocScope.local = 1
|
Std.Time.PlainDateTime.instHSubDuration
|
Std.Time.DateTime
|
HSub Std.Time.PlainDateTime Std.Time.PlainDateTime Std.Time.Duration
|
_private.Std.Data.DTreeMap.Internal.WF.Lemmas.0.Std.DTreeMap.Internal.Impl.entryAtIdx?_eq_getElem?._simp_1_3
|
Std.Data.DTreeMap.Internal.WF.Lemmas
|
β {a b : β}, (compare a b = Ordering.eq) = (a = b)
|
ArchimedeanOrder.of
|
Mathlib.Algebra.Order.Archimedean.Class
|
{M : Type u_1} β M β ArchimedeanOrder M
|
WriterT.uliftable'
|
Mathlib.Control.ULiftable
|
{w : Type u_3} β
{w' : Type u_4} β
{m : Type u_3 β Type u_5} β
{m' : Type u_4 β Type u_6} β [ULiftable m m'] β w β w' β ULiftable (WriterT w m) (WriterT w' m')
|
USize.ofBitVec.sizeOf_spec
|
Init.SizeOf
|
β (toBitVec : BitVec System.Platform.numBits), sizeOf { toBitVec := toBitVec } = 1 + sizeOf toBitVec
|
CommRingCat.instCategory._proof_1
|
Mathlib.Algebra.Category.Ring.Basic
|
β {X Y : CommRingCat} (f : X.Hom Y), { hom' := f.hom'.comp { hom' := RingHom.id βX }.hom' } = f
|
mul_eq_zero_iff_right
|
Mathlib.Algebra.GroupWithZero.Defs
|
β {Mβ : Type u_1} [inst : MulZeroClass Mβ] [NoZeroDivisors Mβ] {a b : Mβ}, b β 0 β (a * b = 0 β a = 0)
|
_private.Init.Data.Slice.Array.Lemmas.0.Subarray.size.eq_1
|
Init.Data.Slice.Array.Lemmas
|
β {Ξ± : Type u_1} (s : Subarray Ξ±), s.size = s.stop - s.start
|
WithLp.instProdPseudoMetricSpace
|
Mathlib.Analysis.Normed.Lp.ProdLp
|
(p : ENNReal) β
(Ξ± : Type u_2) β
(Ξ² : Type u_3) β
[hp : Fact (1 β€ p)] β [PseudoMetricSpace Ξ±] β [PseudoMetricSpace Ξ²] β PseudoMetricSpace (WithLp p (Ξ± Γ Ξ²))
|
CategoryTheory.Limits.LimitPresentation.changeDiag
|
Mathlib.CategoryTheory.Limits.Presentation
|
{C : Type u} β
[inst : CategoryTheory.Category.{v, u} C] β
{J : Type w} β
[inst_1 : CategoryTheory.Category.{t, w} J] β
{X : C} β
(P : CategoryTheory.Limits.LimitPresentation J X) β
{F : CategoryTheory.Functor J C} β (F β
P.diag) β CategoryTheory.Limits.LimitPresentation J X
|
Stream'.Seq.cons_not_terminatedAt_zero._simp_1
|
Mathlib.Data.Seq.Defs
|
β {Ξ± : Type u} {x : Ξ±} {s : Stream'.Seq Ξ±}, (Stream'.Seq.cons x s).TerminatedAt 0 = False
|
Denumerable
|
Mathlib.Logic.Denumerable
|
Type u_3 β Type u_3
|
BitVec.toInt_sshiftRight'
|
Init.Data.BitVec.Lemmas
|
β {w : β} {x y : BitVec w}, (x.sshiftRight' y).toInt = x.toInt >>> y.toNat
|
TopologicalSpace.Opens.map_id_obj
|
Mathlib.Topology.Category.TopCat.Opens
|
β {X : TopCat} (U : TopologicalSpace.Opens βX),
(TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X)).obj U = U
|
_private.Mathlib.Tactic.NormNum.Ineq.0.Mathlib.Meta.NormNum.evalLT.core.nnratArm
|
Mathlib.Tactic.NormNum.Ineq
|
{u : Lean.Level} β
{Ξ± : Q(Type u)} β
(lΞ± : Q(LT Β«$Ξ±Β»)) β
{a b : Q(Β«$Ξ±Β»)} β
Mathlib.Meta.NormNum.Result a β
Mathlib.Meta.NormNum.Result b β
have e := q(Β«$aΒ» < Β«$bΒ»);
Lean.MetaM (Mathlib.Meta.NormNum.Result e)
|
Std.Internal.IO.Async.Signal.sigttou.elim
|
Std.Internal.Async.Signal
|
{motive : Std.Internal.IO.Async.Signal β Sort u} β
(t : Std.Internal.IO.Async.Signal) β t.ctorIdx = 14 β motive Std.Internal.IO.Async.Signal.sigttou β motive t
|
normSeminorm
|
Mathlib.Analysis.Seminorm
|
(π : Type u_3) β
(E : Type u_7) β
[inst : NormedField π] β [inst_1 : SeminormedAddCommGroup E] β [inst_2 : NormedSpace π E] β Seminorm π E
|
_private.Mathlib.Algebra.GroupWithZero.Basic.0.zero_pow.match_1_1
|
Mathlib.Algebra.GroupWithZero.Basic
|
β (motive : (x : β) β x β 0 β Prop) (x : β) (x_1 : x β 0), (β (n : β) (x : n + 1 β 0), motive n.succ x) β motive x x_1
|
CategoryTheory.ShortComplex.Splitting.map
|
Mathlib.Algebra.Homology.ShortComplex.Exact
|
{C : Type u_1} β
{D : Type u_2} β
[inst : CategoryTheory.Category.{v_1, u_1} C] β
[inst_1 : CategoryTheory.Category.{v_2, u_2} D] β
[inst_2 : CategoryTheory.Preadditive C] β
[inst_3 : CategoryTheory.Preadditive D] β
{S : CategoryTheory.ShortComplex C} β
S.Splitting β (F : CategoryTheory.Functor C D) β [inst_4 : F.Additive] β (S.map F).Splitting
|
Lean.PersistentHashMap.Node.brecOn_3
|
Lean.Data.PersistentHashMap
|
{Ξ± : Type u} β
{Ξ² : Type v} β
{motive_1 : Lean.PersistentHashMap.Node Ξ± Ξ² β Sort u_1} β
{motive_2 : Array (Lean.PersistentHashMap.Entry Ξ± Ξ² (Lean.PersistentHashMap.Node Ξ± Ξ²)) β Sort u_1} β
{motive_3 : List (Lean.PersistentHashMap.Entry Ξ± Ξ² (Lean.PersistentHashMap.Node Ξ± Ξ²)) β Sort u_1} β
{motive_4 : Lean.PersistentHashMap.Entry Ξ± Ξ² (Lean.PersistentHashMap.Node Ξ± Ξ²) β Sort u_1} β
(t : Lean.PersistentHashMap.Entry Ξ± Ξ² (Lean.PersistentHashMap.Node Ξ± Ξ²)) β
((t : Lean.PersistentHashMap.Node Ξ± Ξ²) β t.below β motive_1 t) β
((t : Array (Lean.PersistentHashMap.Entry Ξ± Ξ² (Lean.PersistentHashMap.Node Ξ± Ξ²))) β
Lean.PersistentHashMap.Node.below_1 t β motive_2 t) β
((t : List (Lean.PersistentHashMap.Entry Ξ± Ξ² (Lean.PersistentHashMap.Node Ξ± Ξ²))) β
Lean.PersistentHashMap.Node.below_2 t β motive_3 t) β
((t : Lean.PersistentHashMap.Entry Ξ± Ξ² (Lean.PersistentHashMap.Node Ξ± Ξ²)) β
Lean.PersistentHashMap.Node.below_3 t β motive_4 t) β
motive_4 t
|
MeasureTheory.L1.SimpleFunc.setToL1SCLM.congr_simp
|
Mathlib.MeasureTheory.Integral.SetToL1
|
β (Ξ± : Type u_1) (E : Type u_2) {F : Type u_3} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace β E]
[inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace β F] {m : MeasurableSpace Ξ±} (ΞΌ : MeasureTheory.Measure Ξ±)
{T T_1 : Set Ξ± β E βL[β] F} (e_T : T = T_1) {C C_1 : β} (e_C : C = C_1)
(hT : MeasureTheory.DominatedFinMeasAdditive ΞΌ T C),
MeasureTheory.L1.SimpleFunc.setToL1SCLM Ξ± E ΞΌ hT = MeasureTheory.L1.SimpleFunc.setToL1SCLM Ξ± E ΞΌ β―
|
specializingMap_iff_isClosed_image_closure_singleton
|
Mathlib.Topology.Inseparable
|
β {X : Type u_1} {Y : Type u_2} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] {f : X β Y},
Continuous f β (SpecializingMap f β β (x : X), IsClosed (f '' closure {x}))
|
Module.Basis.traceDual_traceDual
|
Mathlib.RingTheory.Trace.Basic
|
β {K : Type u_4} {L : Type u_5} [inst : Field K] [inst_1 : Field L] [inst_2 : Algebra K L] {ΞΉ : Type w}
[inst_3 : FiniteDimensional K L] [inst_4 : Algebra.IsSeparable K L] [inst_5 : Finite ΞΉ] [inst_6 : DecidableEq ΞΉ]
(b : Module.Basis ΞΉ K L), b.traceDual.traceDual = b
|
Lean.Meta.Match.Pattern.val.sizeOf_spec
|
Lean.Meta.Match.Basic
|
β (e : Lean.Expr), sizeOf (Lean.Meta.Match.Pattern.val e) = 1 + sizeOf e
|
_private.Mathlib.SetTheory.PGame.Basic.0.SetTheory.PGame.ofLists._proof_1
|
Mathlib.SetTheory.PGame.Basic
|
β (L : List SetTheory.PGame), Β¬L.length β€ L.length β False
|
MeasureTheory.MemLp.of_fst_of_snd_prodLp
|
Mathlib.MeasureTheory.SpecificCodomains.WithLp
|
β {X : Type u_1} {mX : MeasurableSpace X} {ΞΌ : MeasureTheory.Measure X} {p q : ENNReal} [inst : Fact (1 β€ q)]
{E : Type u_2} {F : Type u_3} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedAddCommGroup F]
{f : X β WithLp q (E Γ F)},
MeasureTheory.MemLp (fun x => (f x).fst) p ΞΌ β§ MeasureTheory.MemLp (fun x => (f x).snd) p ΞΌ β
MeasureTheory.MemLp f p ΞΌ
|
_private.Lean.Server.FileWorker.WidgetRequests.0.Lean.Widget.TaggedTextHighlightState.mk.inj
|
Lean.Server.FileWorker.WidgetRequests
|
β {query : String} {ms : Array String.Pos.Raw} {p : String.Pos.Raw} {anyHighlight : Bool} {query_1 : String}
{ms_1 : Array String.Pos.Raw} {p_1 : String.Pos.Raw} {anyHighlight_1 : Bool},
{ query := query, ms := ms, p := p, anyHighlight := anyHighlight } =
{ query := query_1, ms := ms_1, p := p_1, anyHighlight := anyHighlight_1 } β
query = query_1 β§ ms = ms_1 β§ p = p_1 β§ anyHighlight = anyHighlight_1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.