name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
coe_setBasisOfLinearIndependentOfCardEqFinrank
|
Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
|
β {K : Type u} {V : Type v} [inst : DivisionRing K] [inst_1 : AddCommGroup V] [inst_2 : Module K V] {s : Set V}
[inst_3 : Nonempty βs] [inst_4 : Fintype βs] (lin_ind : LinearIndependent K Subtype.val)
(card_eq : s.toFinset.card = Module.finrank K V),
β(setBasisOfLinearIndependentOfCardEqFinrank lin_ind card_eq) = Subtype.val
|
BoxIntegral.BoxAdditiveMap.rec
|
Mathlib.Analysis.BoxIntegral.Partition.Additive
|
{ΞΉ : Type u_3} β
{M : Type u_4} β
[inst : AddCommMonoid M] β
{I : WithTop (BoxIntegral.Box ΞΉ)} β
{motive : BoxIntegral.BoxAdditiveMap ΞΉ M I β Sort u} β
((toFun : BoxIntegral.Box ΞΉ β M) β
(sum_partition_boxes' :
β (J : BoxIntegral.Box ΞΉ),
βJ β€ I β β (Ο : BoxIntegral.Prepartition J), Ο.IsPartition β β Ji β Ο.boxes, toFun Ji = toFun J) β
motive { toFun := toFun, sum_partition_boxes' := sum_partition_boxes' }) β
(t : BoxIntegral.BoxAdditiveMap ΞΉ M I) β motive t
|
Lean.Environment.containsOnBranch
|
Lean.Environment
|
Lean.Environment β Lean.Name β Bool
|
Std.DTreeMap.Internal.Impl.Balanced.one_le
|
Std.Data.DTreeMap.Internal.Balanced
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {sz : β} {k : Ξ±} {v : Ξ² k} {l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²},
(Std.DTreeMap.Internal.Impl.inner sz k v l r).Balanced β 1 β€ sz
|
TwoSidedIdeal.orderIsoRingCon_apply
|
Mathlib.RingTheory.TwoSidedIdeal.Basic
|
β {R : Type u_1} [inst : NonUnitalNonAssocRing R] (self : TwoSidedIdeal R),
TwoSidedIdeal.orderIsoRingCon self = self.ringCon
|
CategoryTheory.Limits.HasCountableLimits.mk._flat_ctor
|
Mathlib.CategoryTheory.Limits.Shapes.Countable
|
β {C : Type u_1} [inst : CategoryTheory.Category.{u_3, u_1} C],
(β (J : Type) [inst_1 : CategoryTheory.SmallCategory J] [CategoryTheory.CountableCategory J],
CategoryTheory.Limits.HasLimitsOfShape J C) β
CategoryTheory.Limits.HasCountableLimits C
|
_private.Init.Data.Int.DivMod.Bootstrap.0.Int.add_mul_ediv_right.match_1_3
|
Init.Data.Int.DivMod.Bootstrap
|
β (motive : (c : β€) β (β n, c = βn + 1) β β€ β 0 < c β Prop) (c : β€) (x : β n, c = βn + 1) (b : β€) (H : 0 < c),
(β (w a : β) (H : 0 < βw + 1), motive (βw + 1) β― (Int.ofNat a) H) β
(β (k n : β) (H : 0 < βk + 1), motive (βk + 1) β― (Int.negSucc n) H) β motive c x b H
|
Matrix.single_apply_of_ne
|
Mathlib.Data.Matrix.Basis
|
β {m : Type u_2} {n : Type u_3} {Ξ± : Type u_7} [inst : DecidableEq m] [inst_1 : DecidableEq n] [inst_2 : Zero Ξ±] (i : m)
(j : n) (c : Ξ±) (i' : m) (j' : n), Β¬(i = i' β§ j = j') β Matrix.single i j c i' j' = 0
|
Lean.Xml.Parser.elementPrefix
|
Lean.Data.Xml.Parser
|
Std.Internal.Parsec.String.Parser (Array Lean.Xml.Content β Lean.Xml.Element)
|
Lean.Lsp.instFromJsonPrepareRenameParams
|
Lean.Data.Lsp.LanguageFeatures
|
Lean.FromJson Lean.Lsp.PrepareRenameParams
|
Std.TreeMap.Raw.maxKey?_eq_none_iff._simp_1
|
Std.Data.TreeMap.Raw.Lemmas
|
β {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β Ξ± β Ordering} {t : Std.TreeMap.Raw Ξ± Ξ² cmp} [Std.TransCmp cmp],
t.WF β (t.maxKey? = none) = (t.isEmpty = true)
|
Lean.Elab.Term.ElabElimInfo.ctorIdx
|
Lean.Elab.App
|
Lean.Elab.Term.ElabElimInfo β β
|
Polynomial.isSplittingField_C
|
Mathlib.FieldTheory.SplittingField.IsSplittingField
|
β {K : Type v} [inst : Field K] (a : K), Polynomial.IsSplittingField K K (Polynomial.C a)
|
RingHom.liftOfRightInverse._proof_5
|
Mathlib.RingTheory.Ideal.Maps
|
β {A : Type u_1} {B : Type u_2} {C : Type u_3} [inst : Ring A] [inst_1 : Ring B] [inst_2 : Ring C] (f : A β+* B)
(Ο : B β+* C), RingHom.ker f β€ RingHom.ker ββ¨Ο.comp f, β―β©
|
_private.Std.Data.DTreeMap.Internal.Balancing.0.Std.DTreeMap.Internal.Impl.balanceR.match_1.congr_eq_1
|
Std.Data.DTreeMap.Internal.Balancing
|
β {Ξ± : Type u_1} {Ξ² : Ξ± β Type u_2}
(motive :
(r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
r.Balanced β Std.DTreeMap.Internal.Impl.BalanceLPrecond r.size Std.DTreeMap.Internal.Impl.leaf.size β Sort u_3)
(r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) (hrb : r.Balanced)
(hlr : Std.DTreeMap.Internal.Impl.BalanceLPrecond r.size Std.DTreeMap.Internal.Impl.leaf.size)
(h_1 :
(hrb : Std.DTreeMap.Internal.Impl.leaf.Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond Std.DTreeMap.Internal.Impl.leaf.size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive Std.DTreeMap.Internal.Impl.leaf hrb hlr)
(h_2 :
(size : β) β
(k : Ξ±) β
(v : Ξ² k) β
(hrb :
(Std.DTreeMap.Internal.Impl.inner size k v Std.DTreeMap.Internal.Impl.leaf
Std.DTreeMap.Internal.Impl.leaf).Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond
(Std.DTreeMap.Internal.Impl.inner size k v Std.DTreeMap.Internal.Impl.leaf
Std.DTreeMap.Internal.Impl.leaf).size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive
(Std.DTreeMap.Internal.Impl.inner size k v Std.DTreeMap.Internal.Impl.leaf
Std.DTreeMap.Internal.Impl.leaf)
hrb hlr)
(h_3 :
(size : β) β
(rk : Ξ±) β
(rv : Ξ² rk) β
(rr : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
(size_1 : β) β
(k : Ξ±) β
(v : Ξ² k) β
(l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
rr = Std.DTreeMap.Internal.Impl.inner size_1 k v l r β
(hrb :
(Std.DTreeMap.Internal.Impl.inner size rk rv Std.DTreeMap.Internal.Impl.leaf
(Std.DTreeMap.Internal.Impl.inner size_1 k v l r)).Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond
(Std.DTreeMap.Internal.Impl.inner size rk rv Std.DTreeMap.Internal.Impl.leaf
(Std.DTreeMap.Internal.Impl.inner size_1 k v l r)).size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive
(Std.DTreeMap.Internal.Impl.inner size rk rv Std.DTreeMap.Internal.Impl.leaf
(Std.DTreeMap.Internal.Impl.inner size_1 k v l r))
hrb hlr)
(h_4 :
(size : β) β
(rk : Ξ±) β
(rv : Ξ² rk) β
(size_1 : β) β
(rlk : Ξ±) β
(rlv : Ξ² rlk) β
(l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
(hrb :
(Std.DTreeMap.Internal.Impl.inner size rk rv (Std.DTreeMap.Internal.Impl.inner size_1 rlk rlv l r)
Std.DTreeMap.Internal.Impl.leaf).Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond
(Std.DTreeMap.Internal.Impl.inner size rk rv
(Std.DTreeMap.Internal.Impl.inner size_1 rlk rlv l r)
Std.DTreeMap.Internal.Impl.leaf).size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive
(Std.DTreeMap.Internal.Impl.inner size rk rv
(Std.DTreeMap.Internal.Impl.inner size_1 rlk rlv l r) Std.DTreeMap.Internal.Impl.leaf)
hrb hlr)
(h_5 :
(rs : β) β
(rk : Ξ±) β
(rv : Ξ² rk) β
(rls : β) β
(rlk : Ξ±) β
(rlv : Ξ² rlk) β
(rll rlr : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
(rrs : β) β
(k : Ξ±) β
(v : Ξ² k) β
(l r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β
(hrb :
(Std.DTreeMap.Internal.Impl.inner rs rk rv
(Std.DTreeMap.Internal.Impl.inner rls rlk rlv rll rlr)
(Std.DTreeMap.Internal.Impl.inner rrs k v l r)).Balanced) β
(hlr :
Std.DTreeMap.Internal.Impl.BalanceLPrecond
(Std.DTreeMap.Internal.Impl.inner rs rk rv
(Std.DTreeMap.Internal.Impl.inner rls rlk rlv rll rlr)
(Std.DTreeMap.Internal.Impl.inner rrs k v l r)).size
Std.DTreeMap.Internal.Impl.leaf.size) β
motive
(Std.DTreeMap.Internal.Impl.inner rs rk rv
(Std.DTreeMap.Internal.Impl.inner rls rlk rlv rll rlr)
(Std.DTreeMap.Internal.Impl.inner rrs k v l r))
hrb hlr)
(hrb_1 : Std.DTreeMap.Internal.Impl.leaf.Balanced)
(hlr_1 :
Std.DTreeMap.Internal.Impl.BalanceLPrecond Std.DTreeMap.Internal.Impl.leaf.size
Std.DTreeMap.Internal.Impl.leaf.size),
r = Std.DTreeMap.Internal.Impl.leaf β
hrb β hrb_1 β
hlr β hlr_1 β
(match r, hrb, hlr with
| Std.DTreeMap.Internal.Impl.leaf, hrb, hlr => h_1 hrb hlr
| Std.DTreeMap.Internal.Impl.inner size k v Std.DTreeMap.Internal.Impl.leaf Std.DTreeMap.Internal.Impl.leaf,
hrb, hlr => h_2 size k v hrb hlr
|
Std.DTreeMap.Internal.Impl.inner size rk rv Std.DTreeMap.Internal.Impl.leaf
rr@h:(Std.DTreeMap.Internal.Impl.inner size_1 k v l r),
hrb, hlr => h_3 size rk rv rr size_1 k v l r h hrb hlr
|
Std.DTreeMap.Internal.Impl.inner size rk rv (Std.DTreeMap.Internal.Impl.inner size_1 rlk rlv l r)
Std.DTreeMap.Internal.Impl.leaf,
hrb, hlr => h_4 size rk rv size_1 rlk rlv l r hrb hlr
|
Std.DTreeMap.Internal.Impl.inner rs rk rv (Std.DTreeMap.Internal.Impl.inner rls rlk rlv rll rlr)
(Std.DTreeMap.Internal.Impl.inner rrs k v l r),
hrb, hlr => h_5 rs rk rv rls rlk rlv rll rlr rrs k v l r hrb hlr) β
h_1 hrb_1 hlr_1
|
AlgebraicTopology.DoldKan.HigherFacesVanish.induction
|
Mathlib.AlgebraicTopology.DoldKan.Faces
|
β {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] [inst_1 : CategoryTheory.Preadditive C]
{X : CategoryTheory.SimplicialObject C} {Y : C} {n q : β} {Ο : Y βΆ X.obj (Opposite.op (SimplexCategory.mk (n + 1)))},
AlgebraicTopology.DoldKan.HigherFacesVanish q Ο β
AlgebraicTopology.DoldKan.HigherFacesVanish (q + 1)
(CategoryTheory.CategoryStruct.comp Ο
((CategoryTheory.CategoryStruct.id (AlgebraicTopology.AlternatingFaceMapComplex.obj X) +
AlgebraicTopology.DoldKan.HΟ q).f
(n + 1)))
|
Lean.Parser.Term.open.parenthesizer
|
Lean.Parser.Command
|
Lean.PrettyPrinter.Parenthesizer
|
LinearMap.mkContinuous_coe
|
Mathlib.Analysis.Normed.Operator.ContinuousLinearMap
|
β {π : Type u_1} {πβ : Type u_2} {E : Type u_3} {F : Type u_4} [inst : Ring π] [inst_1 : Ring πβ]
[inst_2 : SeminormedAddCommGroup E] [inst_3 : SeminormedAddCommGroup F] [inst_4 : Module π E] [inst_5 : Module πβ F]
{Ο : π β+* πβ} (f : E βββ[Ο] F) (C : β) (h : β (x : E), βf xβ β€ C * βxβ), β(f.mkContinuous C h) = f
|
hnot_sup_self
|
Mathlib.Order.Heyting.Basic
|
β {Ξ± : Type u_2} [inst : CoheytingAlgebra Ξ±] (a : Ξ±), οΏ’a β a = β€
|
CategoryTheory.NatTrans.mk.injEq
|
Mathlib.CategoryTheory.NatTrans
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [inst_1 : CategoryTheory.Category.{vβ, uβ} D]
{F G : CategoryTheory.Functor C D} (app : (X : C) β F.obj X βΆ G.obj X)
(naturality :
autoParam
(β β¦X Y : Cβ¦ (f : X βΆ Y),
CategoryTheory.CategoryStruct.comp (F.map f) (app Y) = CategoryTheory.CategoryStruct.comp (app X) (G.map f))
CategoryTheory.NatTrans.naturality._autoParam)
(app_1 : (X : C) β F.obj X βΆ G.obj X)
(naturality_1 :
autoParam
(β β¦X Y : Cβ¦ (f : X βΆ Y),
CategoryTheory.CategoryStruct.comp (F.map f) (app_1 Y) = CategoryTheory.CategoryStruct.comp (app_1 X) (G.map f))
CategoryTheory.NatTrans.naturality._autoParam),
({ app := app, naturality := naturality } = { app := app_1, naturality := naturality_1 }) = (app = app_1)
|
ENormedSpace.instTop._proof_3
|
Mathlib.Analysis.Normed.Module.ENormedSpace
|
β {π : Type u_2} {V : Type u_1} [inst : NormedField π] [inst_1 : AddCommGroup V] [inst_2 : Module π V] (c : π) (x : V),
(if c β’ x = 0 then 0 else β€) β€ ββcββ * if x = 0 then 0 else β€
|
fwdDiff_const
|
Mathlib.Algebra.Group.ForwardDiff
|
β {M : Type u_1} {G : Type u_2} [inst : AddCommMonoid M] [inst_1 : AddCommGroup G] (h : M) (g : G),
(fwdDiff h fun x => g) = fun x => 0
|
Nat.sSup_mem
|
Mathlib.Data.Nat.Lattice
|
β {s : Set β}, s.Nonempty β BddAbove s β sSup s β s
|
Lean.Elab.Term.Do.attachJPs
|
Lean.Elab.Do.Legacy
|
Array Lean.Elab.Term.Do.JPDecl β Lean.Elab.Term.Do.Code β Lean.Elab.Term.Do.Code
|
_private.Lean.Meta.LevelDefEq.0.Lean.Meta.strictOccursMax
|
Lean.Meta.LevelDefEq
|
Lean.Level β Lean.Level β Bool
|
_private.Init.Grind.Ordered.Module.0.Lean.Grind.OrderedAdd.zsmul_le_zsmul._simp_1_1
|
Init.Grind.Ordered.Module
|
β {M : Type u} [inst : LE M] [inst_1 : Std.IsPreorder M] [inst_2 : Lean.Grind.AddCommGroup M] [Lean.Grind.OrderedAdd M]
{a b : M}, (0 β€ a - b) = (b β€ a)
|
SubAddAction.instInhabited.eq_1
|
Mathlib.GroupTheory.GroupAction.SubMulAction
|
β {R : Type u} {M : Type v} [inst : VAdd R M], SubAddAction.instInhabited = { default := β₯ }
|
RingHom.map_iterate_frobenius
|
Mathlib.Algebra.CharP.Frobenius
|
β {R : Type u_1} [inst : CommSemiring R] {S : Type u_2} [inst_1 : CommSemiring S] (g : R β+* S) (p : β)
[inst_2 : ExpChar R p] [inst_3 : ExpChar S p] (x : R) (n : β),
g ((β(frobenius R p))^[n] x) = (β(frobenius S p))^[n] (g x)
|
PFunctor.Idx
|
Mathlib.Data.PFunctor.Univariate.Basic
|
PFunctor.{uA, uB} β Type (max uA uB)
|
Lean.Meta.Try.Collector.OrdSet.insert
|
Lean.Meta.Tactic.Try.Collect
|
{Ξ± : Type} β {x : Hashable Ξ±} β {x_1 : BEq Ξ±} β Lean.Meta.Try.Collector.OrdSet Ξ± β Ξ± β Lean.Meta.Try.Collector.OrdSet Ξ±
|
_private.Mathlib.Data.Multiset.DershowitzManna.0.Multiset.transGen_oneStep_of_isDershowitzMannaLT._simp_1_1
|
Mathlib.Data.Multiset.DershowitzManna
|
β {Ξ± : Type u_1} {p : Ξ± β Prop} [inst : DecidablePred p] {a : Ξ±} {s : Multiset Ξ±},
(a β Multiset.filter p s) = (a β s β§ p a)
|
_private.Lean.Meta.Tactic.Grind.Main.0.Lean.Meta.Grind.discharge?.match_1
|
Lean.Meta.Tactic.Grind.Main
|
(motive : Option Lean.Expr β Sort u_1) β
(__do_lift : Option Lean.Expr) β
((p : Lean.Expr) β motive (some p)) β ((x : Option Lean.Expr) β motive x) β motive __do_lift
|
ContinuousMap.instNonUnitalCommCStarAlgebra._proof_6
|
Mathlib.Analysis.CStarAlgebra.ContinuousMap
|
β {Ξ± : Type u_1} {A : Type u_2} [inst : TopologicalSpace Ξ±] [inst_1 : CompactSpace Ξ±]
[inst_2 : NonUnitalCommCStarAlgebra A] (a b c : C(Ξ±, A)), a * (b + c) = a * b + a * c
|
Mathlib.Tactic.Monoidal.instMkEvalWhiskerLeftMonoidalM.match_1
|
Mathlib.Tactic.CategoryTheory.Monoidal.Normalize
|
(ctx : Mathlib.Tactic.Monoidal.Context) β
(motive : Option Q(CategoryTheory.MonoidalCategory unknown_1) β Sort u_1) β
(x : Option Q(CategoryTheory.MonoidalCategory unknown_1)) β
((_monoidal : Q(CategoryTheory.MonoidalCategory unknown_1)) β motive (some _monoidal)) β
((x : Option Q(CategoryTheory.MonoidalCategory unknown_1)) β motive x) β motive x
|
isClosed_Ioo_iff
|
Mathlib.Topology.Order.DenselyOrdered
|
β {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] [inst_1 : LinearOrder Ξ±] [OrderTopology Ξ±] [DenselyOrdered Ξ±] {a b : Ξ±},
IsClosed (Set.Ioo a b) β b β€ a
|
_private.Mathlib.Algebra.Module.Submodule.Union.0.Submodule.iUnion_ssubset_of_forall_ne_top_of_card_lt._simp_1_1
|
Mathlib.Algebra.Module.Submodule.Union
|
β {Ξ± : Type u} {s : Set Ξ±}, (s β Set.univ) = (s β Set.univ)
|
UInt8.mod_eq_of_lt
|
Init.Data.UInt.Lemmas
|
β {a b : UInt8}, a < b β a % b = a
|
Aesop.RuleBuilderInput.noConfusion
|
Aesop.Builder.Basic
|
{P : Sort u} β {x1 x2 : Aesop.RuleBuilderInput} β x1 = x2 β Aesop.RuleBuilderInput.noConfusionType P x1 x2
|
_private.Std.Data.DHashMap.Internal.AssocList.Lemmas.0.Std.DHashMap.Internal.AssocList.replace.eq_2
|
Std.Data.DHashMap.Internal.AssocList.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} [inst : BEq Ξ±] (a : Ξ±) (b : Ξ² a) (a_1 : Ξ±) (b_1 : Ξ² a_1)
(es : Std.DHashMap.Internal.AssocList Ξ± Ξ²),
Std.DHashMap.Internal.AssocList.replace a b (Std.DHashMap.Internal.AssocList.cons a_1 b_1 es) =
bif a_1 == a then Std.DHashMap.Internal.AssocList.cons a b es
else Std.DHashMap.Internal.AssocList.cons a_1 b_1 (Std.DHashMap.Internal.AssocList.replace a b es)
|
CategoryTheory.Dial.rightUnitorImpl._proof_1
|
Mathlib.CategoryTheory.Dialectica.Monoidal
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Limits.HasFiniteProducts C]
(X : CategoryTheory.Dial C),
CategoryTheory.Limits.HasLimit (CategoryTheory.Limits.pair X.src CategoryTheory.Dial.tensorUnitImpl.src)
|
NumberField.mixedEmbedding.convexBodySum_volume_eq_zero_of_le_zero
|
Mathlib.NumberTheory.NumberField.CanonicalEmbedding.ConvexBody
|
β (K : Type u_1) [inst : Field K] [inst_1 : NumberField K] {B : β},
B β€ 0 β MeasureTheory.volume (NumberField.mixedEmbedding.convexBodySum K B) = 0
|
iUnion_Iic_eq_Iio_of_lt_of_tendsto
|
Mathlib.Topology.Order.OrderClosed
|
β {Ξ± : Type u} {ΞΉ : Type u_1} {F : Filter ΞΉ} [F.NeBot] [inst : ConditionallyCompleteLinearOrder Ξ±]
[inst_1 : TopologicalSpace Ξ±] [ClosedIicTopology Ξ±] {a : Ξ±} {f : ΞΉ β Ξ±},
(β (i : ΞΉ), f i < a) β Filter.Tendsto f F (nhds a) β β i, Set.Iic (f i) = Set.Iio a
|
CategoryTheory.Limits.HasBiproductsOfShape.colimIsoLim_inv_app
|
Mathlib.CategoryTheory.Limits.Shapes.Biproducts
|
β {J : Type w} {C : Type u} [inst : CategoryTheory.Category.{v, u} C]
[inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] [inst_2 : CategoryTheory.Limits.HasBiproductsOfShape J C]
(X : CategoryTheory.Functor (CategoryTheory.Discrete J) C),
CategoryTheory.Limits.HasBiproductsOfShape.colimIsoLim.inv.app X =
CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Pi.isoLimit X).inv
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.biproduct.lift (CategoryTheory.Limits.Pi.Ο fun j => X.obj { as := j }))
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.biproduct.desc (CategoryTheory.Limits.Sigma.ΞΉ fun j => X.obj { as := j }))
(CategoryTheory.Limits.Sigma.isoColimit X).hom))
|
MonadControlT
|
Init.Control.Basic
|
(Type u β Type v) β (Type u β Type w) β Type (max (max (u + 1) v) w)
|
Matrix.conjTranspose_reindex
|
Mathlib.LinearAlgebra.Matrix.ConjTranspose
|
β {l : Type u_1} {m : Type u_2} {n : Type u_3} {o : Type u_4} {Ξ± : Type v} [inst : Star Ξ±] (eβ : m β l) (eβ : n β o)
(M : Matrix m n Ξ±), ((Matrix.reindex eβ eβ) M).conjTranspose = (Matrix.reindex eβ eβ) M.conjTranspose
|
UniformFun.uniformEquivProdArrow._proof_1
|
Mathlib.Topology.UniformSpace.UniformConvergenceTopology
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst : UniformSpace Ξ²] [inst_1 : UniformSpace Ξ³],
IsUniformInducing β(Equiv.arrowProdEquivProdArrow Ξ± (fun a => Ξ²) fun a => Ξ³)
|
[email protected]._hygCtx._hyg.13
|
Mathlib.Combinatorics.Matroid.Dual
|
Lean.Syntax
|
Lean.Parser.Attr.tactic_alt.parenthesizer
|
Lean.Parser.Attr
|
Lean.PrettyPrinter.Parenthesizer
|
Sum.map_surjective
|
Mathlib.Data.Sum.Basic
|
β {Ξ± : Type u} {Ξ² : Type v} {Ξ³ : Type u_1} {Ξ΄ : Type u_2} {f : Ξ± β Ξ³} {g : Ξ² β Ξ΄},
Function.Surjective (Sum.map f g) β Function.Surjective f β§ Function.Surjective g
|
_private.Mathlib.RingTheory.Valuation.ValuativeRel.Basic.0.ValuativeRel.ext.match_1
|
Mathlib.RingTheory.Valuation.ValuativeRel.Basic
|
β {R : Type u_1} {inst : CommRing R} (motive : ValuativeRel R β Prop) (h : ValuativeRel R),
(β (Rel : R β R β Prop) (rel_total : β (x y : R), Rel x y β¨ Rel y x)
(rel_trans : β {z y x : R}, Rel x y β Rel y z β Rel x z)
(rel_add : β {x y z : R}, Rel x z β Rel y z β Rel (x + y) z)
(rel_mul_right : β {x y : R} (z : R), Rel x y β Rel (x * z) (y * z))
(rel_mul_cancel : β {x y z : R}, Β¬Rel z 0 β Rel (x * z) (y * z) β Rel x y) (not_rel_one_zero : Β¬Rel 1 0),
motive
{ Rel := Rel, rel_total := rel_total, rel_trans := rel_trans, rel_add := rel_add,
rel_mul_right := rel_mul_right, rel_mul_cancel := rel_mul_cancel, not_rel_one_zero := not_rel_one_zero }) β
motive h
|
Module.Basis.prod_apply_inl_fst
|
Mathlib.LinearAlgebra.Basis.Prod
|
β {ΞΉ : Type u_1} {ΞΉ' : Type u_2} {R : Type u_3} {M : Type u_5} {M' : Type u_6} [inst : Semiring R]
[inst_1 : AddCommMonoid M] [inst_2 : Module R M] [inst_3 : AddCommMonoid M'] [inst_4 : Module R M']
(b : Module.Basis ΞΉ R M) (b' : Module.Basis ΞΉ' R M') (i : ΞΉ), ((b.prod b') (Sum.inl i)).1 = b i
|
UInt8.toInt8_ofNat'
|
Init.Data.SInt.Lemmas
|
β {n : β}, (UInt8.ofNat n).toInt8 = Int8.ofNat n
|
GradeOrder.wellFoundedGT
|
Mathlib.Order.Grade
|
β {Ξ± : Type u_3} [inst : Preorder Ξ±] (π : Type u_5) [inst_1 : Preorder π] [GradeOrder π Ξ±] [WellFoundedGT π],
WellFoundedGT Ξ±
|
_private.Mathlib.CategoryTheory.Sites.Coherent.SequentialLimit.0.CategoryTheory.coherentTopology.preimageDiagram.eq_1
|
Mathlib.CategoryTheory.Sites.Coherent.SequentialLimit
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preregular C]
[inst_2 : CategoryTheory.FinitaryExtensive C]
{F : CategoryTheory.Functor βα΅α΅ (CategoryTheory.Sheaf (CategoryTheory.coherentTopology C) (Type v))}
(hF : β (n : β), CategoryTheory.Sheaf.IsLocallySurjective (F.map (CategoryTheory.homOfLE β―).op)) (X : C)
(y : (F.obj (Opposite.op 0)).val.obj (Opposite.op X)),
CategoryTheory.coherentTopology.preimageDiagramβ hF X y =
CategoryTheory.Functor.ofOpSequence
(CategoryTheory.coherentTopology.struct.mapβ (CategoryTheory.coherentTopology.preimageStructβ hF X y))
|
IsSimpleRing.of_surjective
|
Mathlib.RingTheory.SimpleRing.Congr
|
β {R : Type u_1} {S : Type u_2} [inst : NonAssocRing R] [inst_1 : NonAssocRing S] [Nontrivial S] (f : R β+* S),
IsSimpleRing R β Function.Surjective βf β IsSimpleRing S
|
Std.HashSet.getD_union_of_not_mem_left
|
Std.Data.HashSet.Lemmas
|
β {Ξ± : Type u} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {mβ mβ : Std.HashSet Ξ±} [EquivBEq Ξ±] [LawfulHashable Ξ±] {k fallback : Ξ±},
k β mβ β (mβ βͺ mβ).getD k fallback = mβ.getD k fallback
|
Lean.Parser.Term.set_option.parenthesizer
|
Lean.Parser.Command
|
Lean.PrettyPrinter.Parenthesizer
|
CircularPartialOrder.toCircularPreorder
|
Mathlib.Order.Circular
|
{Ξ± : Type u_1} β [self : CircularPartialOrder Ξ±] β CircularPreorder Ξ±
|
ModuleCon.mk.noConfusion
|
Mathlib.Algebra.Module.Congruence.Defs
|
{S : Type u_2} β
{M : Type u_3} β
[inst : Add M] β
[inst_1 : SMul S M] β
(P : Sort u) β
(toAddCon : AddCon M) β
(smul : β (s : S) {x y : M}, toAddCon.toSetoid x y β toAddCon.toSetoid (s β’ x) (s β’ y)) β
(toAddCon' : AddCon M) β
(smul' : β (s : S) {x y : M}, toAddCon'.toSetoid x y β toAddCon'.toSetoid (s β’ x) (s β’ y)) β
{ toAddCon := toAddCon, smul := smul } = { toAddCon := toAddCon', smul := smul' } β
(toAddCon = toAddCon' β P) β P
|
MonoidHom.compLeftContinuousBounded_apply
|
Mathlib.Topology.ContinuousMap.Bounded.Basic
|
β {Ξ² : Type v} {Ξ³ : Type w} (Ξ± : Type u_3) [inst : TopologicalSpace Ξ±] [inst_1 : PseudoMetricSpace Ξ²]
[inst_2 : Monoid Ξ²] [inst_3 : BoundedMul Ξ²] [inst_4 : ContinuousMul Ξ²] [inst_5 : PseudoMetricSpace Ξ³]
[inst_6 : Monoid Ξ³] [inst_7 : BoundedMul Ξ³] [inst_8 : ContinuousMul Ξ³] (g : Ξ² β* Ξ³) {C : NNReal}
(hg : LipschitzWith C βg) (f : BoundedContinuousFunction Ξ± Ξ²),
(MonoidHom.compLeftContinuousBounded Ξ± g hg) f = BoundedContinuousFunction.comp (βg) hg f
|
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
|
Mathlib.Algebra.Order.AddGroupWithTop
|
β {Ξ± : Type u_2} [self : LinearOrderedAddCommMonoidWithTop Ξ±], IsOrderedAddMonoid Ξ±
|
IsAntichain.sperner
|
Mathlib.Combinatorics.SetFamily.LYM
|
β {Ξ± : Type u_2} [inst : Fintype Ξ±] {π : Finset (Finset Ξ±)},
IsAntichain (fun x1 x2 => x1 β x2) βπ β π.card β€ (Fintype.card Ξ±).choose (Fintype.card Ξ± / 2)
|
Batteries.BinomialHeap.Imp.FindMin.WF.casesOn
|
Batteries.Data.BinomialHeap.Basic
|
{Ξ± : Type u_1} β
{le : Ξ± β Ξ± β Bool} β
{res : Batteries.BinomialHeap.Imp.FindMin Ξ±} β
{motive : Batteries.BinomialHeap.Imp.FindMin.WF le res β Sort u} β
(t : Batteries.BinomialHeap.Imp.FindMin.WF le res) β
((rank : β) β
(before :
β {s : Batteries.BinomialHeap.Imp.Heap Ξ±},
Batteries.BinomialHeap.Imp.Heap.WF le rank s β
Batteries.BinomialHeap.Imp.Heap.WF le 0 (res.before s)) β
(node : Batteries.BinomialHeap.Imp.HeapNode.WF le res.val res.node rank) β
(next : Batteries.BinomialHeap.Imp.Heap.WF le (rank + 1) res.next) β
motive { rank := rank, before := before, node := node, next := next }) β
motive t
|
CategoryTheory.uliftFunctor
|
Mathlib.CategoryTheory.Types.Basic
|
CategoryTheory.Functor (Type u) (Type (max u v))
|
Rep.standardComplex.forgetβToModuleCat
|
Mathlib.RepresentationTheory.Homological.Resolution
|
(k G : Type u) β [inst : CommRing k] β [Monoid G] β HomologicalComplex (ModuleCat k) (ComplexShape.down β)
|
_private.Mathlib.Analysis.BoxIntegral.Partition.Additive.0.Option.elim'.match_1.eq_2
|
Mathlib.Analysis.BoxIntegral.Partition.Additive
|
β {Ξ± : Type u_1} (motive : Option Ξ± β Sort u_2) (h_1 : (a : Ξ±) β motive (some a)) (h_2 : Unit β motive none),
(match none with
| some a => h_1 a
| none => h_2 ()) =
h_2 ()
|
Std.DTreeMap.Internal.Impl.Const.entryAtIdxD_eq_getD_entryAtIdx?
|
Std.Data.DTreeMap.Internal.Model
|
β {Ξ± : Type u} {Ξ² : Type v} {t : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²} {i : β} {fallback : Ξ± Γ Ξ²},
Std.DTreeMap.Internal.Impl.Const.entryAtIdxD t i fallback =
(Std.DTreeMap.Internal.Impl.Const.entryAtIdx? t i).getD fallback
|
Int64.le_minValue_iff
|
Init.Data.SInt.Lemmas
|
β {a : Int64}, a β€ Int64.minValue β a = Int64.minValue
|
TensorProduct.instInner
|
Mathlib.Analysis.InnerProductSpace.TensorProduct
|
{π : Type u_1} β
{E : Type u_2} β
{F : Type u_3} β
[inst : RCLike π] β
[inst_1 : NormedAddCommGroup E] β
[inst_2 : InnerProductSpace π E] β
[inst_3 : NormedAddCommGroup F] β [inst_4 : InnerProductSpace π F] β Inner π (TensorProduct π E F)
|
MeasureTheory.integral_union_ae
|
Mathlib.MeasureTheory.Integral.Bochner.Set
|
β {X : Type u_1} {E : Type u_3} {mX : MeasurableSpace X} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace β E]
{f : X β E} {s t : Set X} {ΞΌ : MeasureTheory.Measure X},
MeasureTheory.AEDisjoint ΞΌ s t β
MeasureTheory.NullMeasurableSet t ΞΌ β
MeasureTheory.IntegrableOn f s ΞΌ β
MeasureTheory.IntegrableOn f t ΞΌ β β« (x : X) in s βͺ t, f x βΞΌ = β« (x : X) in s, f x βΞΌ + β« (x : X) in t, f x βΞΌ
|
Nat.le.below.refl
|
Init.Prelude
|
β {n : β} {motive : (a : β) β n.le a β Prop}, Nat.le.below β―
|
Batteries.PairingHeapImp.Heap.foldTreeM._unsafe_rec
|
Batteries.Data.PairingHeap
|
{m : Type u_1 β Type u_2} β
{Ξ² : Type u_1} β {Ξ± : Type u_3} β [Monad m] β Ξ² β (Ξ± β Ξ² β Ξ² β m Ξ²) β Batteries.PairingHeapImp.Heap Ξ± β m Ξ²
|
_private.Mathlib.NumberTheory.Divisors.0.Nat.filter_dvd_eq_properDivisors._simp_1_5
|
Mathlib.NumberTheory.Divisors
|
β {a c b : Prop}, (a β§ c β b β§ c) = (c β (a β b))
|
invMonoidHom.eq_1
|
Mathlib.Algebra.Group.Hom.Basic
|
β {Ξ± : Type u_1} [inst : DivisionCommMonoid Ξ±], invMonoidHom = { toFun := Inv.inv, map_one' := β―, map_mul' := β― }
|
_private.Mathlib.Data.Nat.Prime.Defs.0.Nat.prime_iff_not_exists_mul_eq._simp_1_6
|
Mathlib.Data.Nat.Prime.Defs
|
β {Ξ± : Type u_1} [inst : LinearOrder Ξ±] {a b : Ξ±}, (Β¬a < b) = (b β€ a)
|
LeanSearchClient.LoogleResult.recOn
|
LeanSearchClient.LoogleSyntax
|
{motive : LeanSearchClient.LoogleResult β Sort u} β
(t : LeanSearchClient.LoogleResult) β
motive LeanSearchClient.LoogleResult.empty β
((a : Array LeanSearchClient.SearchResult) β motive (LeanSearchClient.LoogleResult.success a)) β
((error : String) β
(suggestions : Option (List String)) β motive (LeanSearchClient.LoogleResult.failure error suggestions)) β
motive t
|
Std.Tactic.BVDecide.BVPred.rec
|
Std.Tactic.BVDecide.Bitblast.BVExpr.Basic
|
{motive : Std.Tactic.BVDecide.BVPred β Sort u} β
({w : β} β
(lhs : Std.Tactic.BVDecide.BVExpr w) β
(op : Std.Tactic.BVDecide.BVBinPred) β
(rhs : Std.Tactic.BVDecide.BVExpr w) β motive (Std.Tactic.BVDecide.BVPred.bin lhs op rhs)) β
({w : β} β
(expr : Std.Tactic.BVDecide.BVExpr w) β (idx : β) β motive (Std.Tactic.BVDecide.BVPred.getLsbD expr idx)) β
(t : Std.Tactic.BVDecide.BVPred) β motive t
|
Topology.IsUpperSet.topology_eq_upperSetTopology
|
Mathlib.Topology.Order.UpperLowerSetTopology
|
β {Ξ± : Type u_4} {t : TopologicalSpace Ξ±} {inst : Preorder Ξ±} [self : Topology.IsUpperSet Ξ±], t = Topology.upperSet Ξ±
|
_private.Init.Data.UInt.Lemmas.0.USize.pos_iff_ne_zero._simp_1_2
|
Init.Data.UInt.Lemmas
|
β {Ξ± : Sort u_1} {a b : Ξ±}, (a = b) = (b = a)
|
Vector.back?
|
Init.Data.Vector.Basic
|
{Ξ± : Type u_1} β {n : β} β Vector Ξ± n β Option Ξ±
|
_private.Lean.Compiler.LCNF.ElimDeadBranches.0.Lean.Compiler.LCNF.UnreachableBranches.Value.merge._sparseCasesOn_1
|
Lean.Compiler.LCNF.ElimDeadBranches
|
{motive_1 : Lean.Compiler.LCNF.UnreachableBranches.Value β Sort u} β
(t : Lean.Compiler.LCNF.UnreachableBranches.Value) β
motive_1 Lean.Compiler.LCNF.UnreachableBranches.Value.bot β
motive_1 Lean.Compiler.LCNF.UnreachableBranches.Value.top β
((vs : List Lean.Compiler.LCNF.UnreachableBranches.Value) β
motive_1 (Lean.Compiler.LCNF.UnreachableBranches.Value.choice vs)) β
(t.ctorIdx β 0 β t.ctorIdx β 1 β t.ctorIdx β 3 β motive_1 t) β motive_1 t
|
Int.le_emod_self_add_one_iff
|
Init.Data.Int.DivMod.Lemmas
|
β {a b : β€}, 0 < b β (b β€ a % b + 1 β b β£ a + 1)
|
Topology.instIsLowerSet
|
Mathlib.Topology.Order.UpperLowerSetTopology
|
β {Ξ± : Type u_1} [inst : Preorder Ξ±], Topology.IsLowerSet Ξ±
|
LinearMap.extendToπ'._proof_3
|
Mathlib.Analysis.RCLike.Extend
|
β {π : Type u_1} [inst : RCLike π] {F : Type u_2} [inst_1 : AddCommGroup F] [inst_2 : Module β F] [inst_3 : Module π F]
(fr : Module.Dual β F),
(β (c : β) (x : F), β(fr (βc β’ x)) = βc * β(fr x)) β
β (c : β) (x : F),
β(fr (βc β’ x)) - RCLike.I * β(fr (RCLike.I β’ βc β’ x)) = βc * (β(fr x) - RCLike.I * β(fr (RCLike.I β’ x)))
|
_private.Mathlib.AlgebraicTopology.SimplicialSet.NerveNondegenerate.0.PartialOrder.mem_nerve_nonDegenerate_iff_strictMono._simp_1_1
|
Mathlib.AlgebraicTopology.SimplicialSet.NerveNondegenerate
|
β {X : Type u_1} [inst : PartialOrder X] {n : β}
(s : (CategoryTheory.nerve X).obj (Opposite.op (SimplexCategory.mk (n + 1)))) (i : Fin (n + 1)),
(s β Set.range (CategoryTheory.SimplicialObject.Ο (CategoryTheory.nerve X) i)) = (s.obj i.castSucc = s.obj i.succ)
|
Nat.iSup_le_succ
|
Mathlib.Data.Nat.Lattice
|
β {Ξ± : Type u_1} [inst : CompleteLattice Ξ±] (u : β β Ξ±) (n : β),
β¨ k, β¨ (_ : k β€ n + 1), u k = (β¨ k, β¨ (_ : k β€ n), u k) β u (n + 1)
|
ContinuousMap.compMonoidHom'._proof_1
|
Mathlib.Topology.ContinuousMap.Algebra
|
β {Ξ± : Type u_1} {Ξ² : Type u_3} [inst : TopologicalSpace Ξ±] [inst_1 : TopologicalSpace Ξ²] {Ξ³ : Type u_2}
[inst_2 : TopologicalSpace Ξ³] [inst_3 : MulOneClass Ξ³] (g : C(Ξ±, Ξ²)), ContinuousMap.comp 1 g = 1
|
Order.exists_series_of_le_coheight
|
Mathlib.Order.KrullDimension
|
β {Ξ± : Type u_1} [inst : Preorder Ξ±] (a : Ξ±) {n : β}, βn β€ Order.coheight a β β p, RelSeries.head p = a β§ p.length = n
|
Mathlib.Tactic.Bicategory.evalWhiskerRight_cons_of_of
|
Mathlib.Tactic.CategoryTheory.Bicategory.Normalize
|
β {B : Type u} [inst : CategoryTheory.Bicategory B] {a b c : B} {f g h i : a βΆ b} {j : b βΆ c} {Ξ± : f β
g} {Ξ· : g βΆ h}
{Ξ·s : h βΆ i} {Ξ·sβ : CategoryTheory.CategoryStruct.comp h j βΆ CategoryTheory.CategoryStruct.comp i j}
{Ξ·β : CategoryTheory.CategoryStruct.comp g j βΆ CategoryTheory.CategoryStruct.comp h j}
{Ξ·β : CategoryTheory.CategoryStruct.comp g j βΆ CategoryTheory.CategoryStruct.comp i j}
{Ξ·β : CategoryTheory.CategoryStruct.comp f j βΆ CategoryTheory.CategoryStruct.comp i j},
CategoryTheory.Bicategory.whiskerRight Ξ·s j = Ξ·sβ β
CategoryTheory.Bicategory.whiskerRight Ξ· j = Ξ·β β
CategoryTheory.CategoryStruct.comp Ξ·β Ξ·sβ = Ξ·β β
CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRightIso Ξ± j).hom Ξ·β = Ξ·β β
CategoryTheory.Bicategory.whiskerRight
(CategoryTheory.CategoryStruct.comp Ξ±.hom (CategoryTheory.CategoryStruct.comp Ξ· Ξ·s)) j =
Ξ·β
|
MeasureTheory.tendsto_of_uncrossing_lt_top
|
Mathlib.Probability.Martingale.Convergence
|
β {Ξ© : Type u_1} {f : β β Ξ© β β} {Ο : Ξ©},
Filter.liminf (fun n => ββf n Οββ) Filter.atTop < β€ β
(β (a b : β), a < b β MeasureTheory.upcrossings (βa) (βb) f Ο < β€) β
β c, Filter.Tendsto (fun n => f n Ο) Filter.atTop (nhds c)
|
Mathlib.Tactic.RingNF.RingMode.recOn
|
Mathlib.Tactic.Ring.RingNF
|
{motive : Mathlib.Tactic.RingNF.RingMode β Sort u} β
(t : Mathlib.Tactic.RingNF.RingMode) β
motive Mathlib.Tactic.RingNF.RingMode.SOP β motive Mathlib.Tactic.RingNF.RingMode.raw β motive t
|
Polynomial.natDegree_pow_X_add_C
|
Mathlib.Algebra.Polynomial.Monic
|
β {R : Type u} [inst : Semiring R] [Nontrivial R] (n : β) (r : R), ((Polynomial.X + Polynomial.C r) ^ n).natDegree = n
|
Substring.Raw.ValidFor.isEmpty
|
Batteries.Data.String.Lemmas
|
β {l m r : List Char} {s : Substring.Raw}, Substring.Raw.ValidFor l m r s β (s.isEmpty = true β m = [])
|
Batteries.instOrientedCmpCompareOnOfOrientedOrd
|
Batteries.Classes.Deprecated
|
β {Ξ² : Type u_1} {Ξ± : Sort u_2} [inst : Ord Ξ²] [Batteries.OrientedOrd Ξ²] (f : Ξ± β Ξ²),
Batteries.OrientedCmp (compareOn f)
|
PFun.prodMap_id_id
|
Mathlib.Data.PFun
|
β {Ξ± : Type u_1} {Ξ² : Type u_2}, (PFun.id Ξ±).prodMap (PFun.id Ξ²) = PFun.id (Ξ± Γ Ξ²)
|
ModularForm.mk.noConfusion
|
Mathlib.NumberTheory.ModularForms.Basic
|
{Ξ : Subgroup (GL (Fin 2) β)} β
{k : β€} β
(P : Sort u) β
(toSlashInvariantForm : SlashInvariantForm Ξ k) β
(holo' : MDifferentiable (modelWithCornersSelf β β) (modelWithCornersSelf β β) βtoSlashInvariantForm) β
(bdd_at_cusps' : β {c : OnePoint β}, IsCusp c Ξ β c.IsBoundedAt toSlashInvariantForm.toFun k) β
(toSlashInvariantForm' : SlashInvariantForm Ξ k) β
(holo'' : MDifferentiable (modelWithCornersSelf β β) (modelWithCornersSelf β β) βtoSlashInvariantForm') β
(bdd_at_cusps'' : β {c : OnePoint β}, IsCusp c Ξ β c.IsBoundedAt toSlashInvariantForm'.toFun k) β
{ toSlashInvariantForm := toSlashInvariantForm, holo' := holo', bdd_at_cusps' := bdd_at_cusps' } =
{ toSlashInvariantForm := toSlashInvariantForm', holo' := holo'',
bdd_at_cusps' := bdd_at_cusps'' } β
(toSlashInvariantForm = toSlashInvariantForm' β P) β P
|
Fin.foldr_congr
|
Init.Data.Fin.Fold
|
β {Ξ± : Sort u_1} {n k : β} (w : n = k) (f : Fin n β Ξ± β Ξ±), Fin.foldr n f = Fin.foldr k fun i => f (Fin.cast β― i)
|
topologicalGroup_of_lieGroup
|
Mathlib.Geometry.Manifold.Algebra.LieGroup
|
β {π : Type u_1} [inst : NontriviallyNormedField π] {H : Type u_2} [inst_1 : TopologicalSpace H] {E : Type u_3}
[inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace π E] (I : ModelWithCorners π E H) (n : WithTop ββ)
{G : Type u_4} [inst_4 : TopologicalSpace G] [inst_5 : ChartedSpace H G] [inst_6 : Group G] [LieGroup I n G],
IsTopologicalGroup G
|
_private.Mathlib.Data.Finset.Prod.0.Finset.subset_product_image_fst._simp_1_1
|
Mathlib.Data.Finset.Prod
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : DecidableEq Ξ²] {f : Ξ± β Ξ²} {s : Finset Ξ±} {b : Ξ²},
(b β Finset.image f s) = β a β s, f a = b
|
Finset.prod_bij'
|
Mathlib.Algebra.BigOperators.Group.Finset.Defs
|
β {ΞΉ : Type u_1} {ΞΊ : Type u_2} {M : Type u_3} [inst : CommMonoid M] {s : Finset ΞΉ} {t : Finset ΞΊ} {f : ΞΉ β M}
{g : ΞΊ β M} (i : (a : ΞΉ) β a β s β ΞΊ) (j : (a : ΞΊ) β a β t β ΞΉ) (hi : β (a : ΞΉ) (ha : a β s), i a ha β t)
(hj : β (a : ΞΊ) (ha : a β t), j a ha β s),
(β (a : ΞΉ) (ha : a β s), j (i a ha) β― = a) β
(β (a : ΞΊ) (ha : a β t), i (j a ha) β― = a) β
(β (a : ΞΉ) (ha : a β s), f a = g (i a ha)) β β x β s, f x = β x β t, g x
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.