name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Lean.Lsp.DependencyBuildMode._sizeOf_inst
Lean.Data.Lsp.Extra
SizeOf Lean.Lsp.DependencyBuildMode
CategoryTheory.Limits.Trident.ΞΉ
Mathlib.CategoryTheory.Limits.Shapes.WideEqualizers
{J : Type w} β†’ {C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {X Y : C} β†’ {f : J β†’ (X ⟢ Y)} β†’ (t : CategoryTheory.Limits.Trident f) β†’ ((CategoryTheory.Functor.const (CategoryTheory.Limits.WalkingParallelFamily J)).obj t.pt).obj CategoryTheory.Limits.WalkingParallelFamily.zero ⟢ (CategoryTheory.Limits.parallelFamily f).obj CategoryTheory.Limits.WalkingParallelFamily.zero
_private.Init.Data.BitVec.Lemmas.0.BitVec.toInt_mul_toInt_lt_neg_two_pow_iff._proof_1_8
Init.Data.BitVec.Lemmas
βˆ€ (w : β„•) {x y : BitVec (w + 1)}, ((w + 1) * 2 - 2 < (w + 1) * 2 - 1 β†’ 2 ^ ((w + 1) * 2 - 2) < 2 ^ ((w + 1) * 2 - 1)) β†’ x.toInt * y.toInt ≀ 2 ^ ((w + 1) * 2 - 2) β†’ Β¬x.toInt * y.toInt * 2 < 2 ^ ((w + 1) * 2 - 1) * 2 β†’ False
AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_X
Mathlib.AlgebraicGeometry.Cover.Open
βˆ€ {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) [H : CompactSpace β†₯X] (x : β†₯β‹―.choose), 𝒰.finiteSubcover.X x = 𝒰.X (AlgebraicGeometry.Scheme.Cover.idx 𝒰 ↑x)
Lean.RBNode.leaf
Lean.Data.RBMap
{Ξ± : Type u} β†’ {Ξ² : Ξ± β†’ Type v} β†’ Lean.RBNode Ξ± Ξ²
Multiset.countP_congr
Mathlib.Data.Multiset.Count
βˆ€ {Ξ± : Type u_1} {s s' : Multiset Ξ±}, s = s' β†’ βˆ€ {p p' : Ξ± β†’ Prop} [inst : DecidablePred p] [inst_1 : DecidablePred p'], (βˆ€ x ∈ s, p x = p' x) β†’ Multiset.countP p s = Multiset.countP p' s'
instToStringFloat32
Init.Data.Float32
ToString Float32
Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.ShiftConcatInput.lhs
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Udiv
{Ξ± : Type} β†’ [inst : Hashable Ξ±] β†’ [inst_1 : DecidableEq Ξ±] β†’ {aig : Std.Sat.AIG Ξ±} β†’ {len : β„•} β†’ Std.Tactic.BVDecide.BVExpr.bitblast.blastUdiv.ShiftConcatInput aig len β†’ aig.RefVec len
Lean.Server.RequestHandler._sizeOf_inst
Lean.Server.Requests
SizeOf Lean.Server.RequestHandler
BddOrd.instConcreteCategoryBoundedOrderHomCarrier._proof_2
Mathlib.Order.Category.BddOrd
βˆ€ {X Y : BddOrd} (f : X ⟢ Y), { hom' := f.hom' } = f
Set.coe_snd_biUnionEqSigmaOfDisjoint
Mathlib.Data.Set.Pairwise.Lattice
βˆ€ {Ξ± : Type u_5} {ΞΉ : Type u_6} {s : Set ΞΉ} {f : ΞΉ β†’ Set Ξ±} (h : s.PairwiseDisjoint f) (x : ↑(⋃ i ∈ s, f i)), ↑((Set.biUnionEqSigmaOfDisjoint h) x).snd = ↑x
Quaternion.instNormedAddCommGroupReal._proof_3
Mathlib.Analysis.Quaternion
βˆ€ (x y : Quaternion ℝ) (r : ℝ), (r β€’ x * star y).re = (starRingEnd ℝ) r * (x * star y).re
Aesop.TraceOption.mk.noConfusion
Aesop.Tracing
(P : Sort u) β†’ (traceClass : Lean.Name) β†’ (option : Lean.Option Bool) β†’ (traceClass' : Lean.Name) β†’ (option' : Lean.Option Bool) β†’ { traceClass := traceClass, option := option } = { traceClass := traceClass', option := option' } β†’ (traceClass = traceClass' β†’ option = option' β†’ P) β†’ P
torusMap_zero_radius
Mathlib.MeasureTheory.Integral.TorusIntegral
βˆ€ {n : β„•} (c : Fin n β†’ β„‚), torusMap c 0 = Function.const (Fin n β†’ ℝ) c
Ordinal.inductionOnWellOrder
Mathlib.SetTheory.Ordinal.Basic
βˆ€ {C : Ordinal.{u_1} β†’ Prop} (o : Ordinal.{u_1}), (βˆ€ (Ξ± : Type u_1) [inst : LinearOrder Ξ±] [inst_1 : WellFoundedLT Ξ±], C (Ordinal.type fun x1 x2 => x1 < x2)) β†’ C o
MeasureTheory.MemLp.exists_boundedContinuous_integral_rpow_sub_le
Mathlib.MeasureTheory.Function.ContinuousMapDense
βˆ€ {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] [NormalSpace Ξ±] [inst_2 : MeasurableSpace Ξ±] [BorelSpace Ξ±] {E : Type u_2} [inst_4 : NormedAddCommGroup E] {ΞΌ : MeasureTheory.Measure Ξ±} [NormedSpace ℝ E] [ΞΌ.WeaklyRegular] {p : ℝ}, 0 < p β†’ βˆ€ {f : Ξ± β†’ E}, MeasureTheory.MemLp f (ENNReal.ofReal p) ΞΌ β†’ βˆ€ {Ξ΅ : ℝ}, 0 < Ξ΅ β†’ βˆƒ g, ∫ (x : Ξ±), β€–f x - g xβ€– ^ p βˆ‚ΞΌ ≀ Ξ΅ ∧ MeasureTheory.MemLp (⇑g) (ENNReal.ofReal p) ΞΌ
ContinuousOpenMap._sizeOf_inst
Mathlib.Topology.Hom.Open
(Ξ± : Type u_6) β†’ (Ξ² : Type u_7) β†’ {inst : TopologicalSpace Ξ±} β†’ {inst_1 : TopologicalSpace Ξ²} β†’ [SizeOf Ξ±] β†’ [SizeOf Ξ²] β†’ SizeOf (Ξ± β†’CO Ξ²)
indicator_ae_eq_zero_of_restrict_ae_eq_zero
Mathlib.MeasureTheory.Measure.Restrict
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} {s : Set Ξ±} {f : Ξ± β†’ Ξ²} [inst_1 : Zero Ξ²], MeasurableSet s β†’ f =ᡐ[ΞΌ.restrict s] 0 β†’ s.indicator f =ᡐ[ΞΌ] 0
CategoryTheory.CommMon.X
Mathlib.CategoryTheory.Monoidal.CommMon_
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ [inst_1 : CategoryTheory.MonoidalCategory C] β†’ [inst_2 : CategoryTheory.BraidedCategory C] β†’ CategoryTheory.CommMon C β†’ C
CategoryTheory.Limits.WalkingMulticospan.ctorElim
Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer
{J : CategoryTheory.Limits.MulticospanShape} β†’ {motive : CategoryTheory.Limits.WalkingMulticospan J β†’ Sort u} β†’ (ctorIdx : β„•) β†’ (t : CategoryTheory.Limits.WalkingMulticospan J) β†’ ctorIdx = t.ctorIdx β†’ CategoryTheory.Limits.WalkingMulticospan.ctorElimType ctorIdx β†’ motive t
AddMonoidAlgebra.single_mem_grade
Mathlib.Algebra.MonoidAlgebra.Grading
βˆ€ {M : Type u_1} {R : Type u_4} [inst : CommSemiring R] (i : M) (r : R), (funβ‚€ | i => r) ∈ AddMonoidAlgebra.grade R i
Lean.Doc.Block.brecOn_7
Lean.DocString.Types
{i : Type u} β†’ {b : Type v} β†’ {motive_1 : Lean.Doc.Block i b β†’ Sort u_1} β†’ {motive_2 : Array (Lean.Doc.ListItem (Lean.Doc.Block i b)) β†’ Sort u_1} β†’ {motive_3 : Array (Lean.Doc.DescItem (Lean.Doc.Inline i) (Lean.Doc.Block i b)) β†’ Sort u_1} β†’ {motive_4 : Array (Lean.Doc.Block i b) β†’ Sort u_1} β†’ {motive_5 : List (Lean.Doc.ListItem (Lean.Doc.Block i b)) β†’ Sort u_1} β†’ {motive_6 : List (Lean.Doc.DescItem (Lean.Doc.Inline i) (Lean.Doc.Block i b)) β†’ Sort u_1} β†’ {motive_7 : List (Lean.Doc.Block i b) β†’ Sort u_1} β†’ {motive_8 : Lean.Doc.ListItem (Lean.Doc.Block i b) β†’ Sort u_1} β†’ {motive_9 : Lean.Doc.DescItem (Lean.Doc.Inline i) (Lean.Doc.Block i b) β†’ Sort u_1} β†’ (t : Lean.Doc.ListItem (Lean.Doc.Block i b)) β†’ ((t : Lean.Doc.Block i b) β†’ t.below β†’ motive_1 t) β†’ ((t : Array (Lean.Doc.ListItem (Lean.Doc.Block i b))) β†’ Lean.Doc.Block.below_1 t β†’ motive_2 t) β†’ ((t : Array (Lean.Doc.DescItem (Lean.Doc.Inline i) (Lean.Doc.Block i b))) β†’ Lean.Doc.Block.below_2 t β†’ motive_3 t) β†’ ((t : Array (Lean.Doc.Block i b)) β†’ Lean.Doc.Block.below_3 t β†’ motive_4 t) β†’ ((t : List (Lean.Doc.ListItem (Lean.Doc.Block i b))) β†’ Lean.Doc.Block.below_4 t β†’ motive_5 t) β†’ ((t : List (Lean.Doc.DescItem (Lean.Doc.Inline i) (Lean.Doc.Block i b))) β†’ Lean.Doc.Block.below_5 t β†’ motive_6 t) β†’ ((t : List (Lean.Doc.Block i b)) β†’ Lean.Doc.Block.below_6 t β†’ motive_7 t) β†’ ((t : Lean.Doc.ListItem (Lean.Doc.Block i b)) β†’ Lean.Doc.Block.below_7 t β†’ motive_8 t) β†’ ((t : Lean.Doc.DescItem (Lean.Doc.Inline i) (Lean.Doc.Block i b)) β†’ Lean.Doc.Block.below_8 t β†’ motive_9 t) β†’ motive_8 t
Ideal.pointwise_smul_toAddSubGroup
Mathlib.RingTheory.Ideal.Pointwise
βˆ€ {M : Type u_1} [inst : Monoid M] {R : Type u_3} [inst_1 : Ring R] [inst_2 : MulSemiringAction M R] (a : M) (S : Ideal R), (Function.Surjective fun r => a β€’ r) β†’ Submodule.toAddSubgroup (a β€’ S) = a β€’ Submodule.toAddSubgroup S
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.Equiv.entryAtIdx_eq._simp_1_3
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {x : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} {k : Ξ±}, (k ∈ t) = (Std.DTreeMap.Internal.Impl.contains k t = true)
Equiv.invFun
Mathlib.Logic.Equiv.Defs
{Ξ± : Sort u_1} β†’ {Ξ² : Sort u_2} β†’ Ξ± ≃ Ξ² β†’ Ξ² β†’ Ξ±
Mathlib.TacticAnalysis.Pass._sizeOf_inst
Mathlib.Tactic.TacticAnalysis
SizeOf Mathlib.TacticAnalysis.Pass
Matrix.vecMul_empty
Mathlib.LinearAlgebra.Matrix.Notation
βˆ€ {Ξ± : Type u} {n' : Type uβ‚™} [inst : NonUnitalNonAssocSemiring Ξ±] [inst_1 : Fintype n'] (v : n' β†’ Ξ±) (B : Matrix n' (Fin 0) Ξ±), Matrix.vecMul v B = ![]
_private.Mathlib.Data.List.Cycle.0.List.next_eq_getElem._proof_1_24
Mathlib.Data.List.Cycle
βˆ€ {Ξ± : Type u_1} [inst : (a b : Ξ±) β†’ Decidable (a = b)] {l : List Ξ±} {a : Ξ±}, a ∈ l β†’ βˆ€ (hl : Β¬l = []), a βˆ‰ l.dropLast β†’ l.length - (l.dropLast.length + [l.getLast β‹―].dropLast.length + 1) < [[l.getLast β‹―].getLast β‹―].length
NumberField.basisOfFractionalIdeal._proof_2
Mathlib.NumberTheory.NumberField.FractionalIdeal
βˆ€ (K : Type u_1) [inst : Field K] [inst_1 : NumberField K] (I : (FractionalIdeal (nonZeroDivisors (NumberField.RingOfIntegers K)) K)Λ£), LinearMap.CompatibleSMul (β†₯↑↑I) K β„€ (NumberField.RingOfIntegers K)
AddUnits.leftOfAdd.eq_1
Mathlib.Algebra.Group.Commute.Units
βˆ€ {M : Type u_1} [inst : AddMonoid M] (u : AddUnits M) (a b : M) (hu : a + b = ↑u) (hc : AddCommute a b), u.leftOfAdd a b hu hc = { val := a, neg := b + ↑(-u), val_neg := β‹―, neg_val := β‹― }
Subring.instField._proof_13
Mathlib.Algebra.Ring.Subring.Basic
βˆ€ {K : Type u_1} [inst : DivisionRing K] (q : β„š), ↑q = ↑q
List.prod_inv_reverse
Mathlib.Algebra.BigOperators.Group.List.Basic
βˆ€ {G : Type u_7} [inst : Group G] (L : List G), L.prod⁻¹ = (List.map (fun x => x⁻¹) L).reverse.prod
Equiv.prodAssoc.match_3
Mathlib.Logic.Equiv.Prod
βˆ€ (Ξ± : Type u_1) (Ξ² : Type u_3) (Ξ³ : Type u_2) (motive : Ξ± Γ— Ξ² Γ— Ξ³ β†’ Prop) (x : Ξ± Γ— Ξ² Γ— Ξ³), (βˆ€ (fst : Ξ±) (fst_1 : Ξ²) (snd : Ξ³), motive (fst, fst_1, snd)) β†’ motive x
Ordinal.CNF.rec_pos
Mathlib.SetTheory.Ordinal.CantorNormalForm
βˆ€ (b : Ordinal.{u_2}) {o : Ordinal.{u_2}} {C : Ordinal.{u_2} β†’ Sort u_1} (ho : o β‰  0) (H0 : C 0) (H : (o : Ordinal.{u_2}) β†’ o β‰  0 β†’ C (o % b ^ Ordinal.log b o) β†’ C o), Ordinal.CNF.rec b H0 H o = H o ho (Ordinal.CNF.rec b H0 H (o % b ^ Ordinal.log b o))
Bundle.TotalSpace.toProd._proof_1
Mathlib.Data.Bundle
βˆ€ (B : Type u_1) (F : Type u_2) (x : Bundle.TotalSpace F fun x => F), { proj := (x.proj, x.snd).1, snd := (x.proj, x.snd).2 } = { proj := (x.proj, x.snd).1, snd := (x.proj, x.snd).2 }
_private.Mathlib.Algebra.BigOperators.ModEq.0.Int.prod_modEq_single._simp_1_1
Mathlib.Algebra.BigOperators.ModEq
βˆ€ (a b : β„€) (c : β„•), (a ≑ b [ZMOD ↑c]) = (↑a = ↑b)
CategoryTheory.Comma.unopFunctor_map
Mathlib.CategoryTheory.Comma.Basic
βˆ€ {A : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} A] {B : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} B] {T : Type u₃} [inst_2 : CategoryTheory.Category.{v₃, u₃} T] (L : CategoryTheory.Functor A T) (R : CategoryTheory.Functor B T) {X Y : CategoryTheory.Comma L.op R.op} (f : X ⟢ Y), (CategoryTheory.Comma.unopFunctor L R).map f = Opposite.op { left := f.right.unop, right := f.left.unop, w := β‹― }
AddCommMonCat.recOn
Mathlib.Algebra.Category.MonCat.Basic
{motive : AddCommMonCat β†’ Sort u_1} β†’ (t : AddCommMonCat) β†’ ((carrier : Type u) β†’ [str : AddCommMonoid carrier] β†’ motive { carrier := carrier, str := str }) β†’ motive t
Subfield.sInf_toSubring
Mathlib.Algebra.Field.Subfield.Basic
βˆ€ {K : Type u} [inst : DivisionRing K] (s : Set (Subfield K)), (sInf s).toSubring = β¨… t ∈ s, t.toSubring
WeierstrassCurve.Projective.negDblY_eq'
Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Formula
βˆ€ {R : Type r} [inst : CommRing R] {W' : WeierstrassCurve.Projective R} {P : Fin 3 β†’ R}, W'.Equation P β†’ W'.negDblY P * P 2 ^ 2 = -(MvPolynomial.eval P) W'.polynomialX * ((MvPolynomial.eval P) W'.polynomialX ^ 2 - W'.a₁ * (MvPolynomial.eval P) W'.polynomialX * P 2 * (P 1 - W'.negY P) - W'.aβ‚‚ * P 2 ^ 2 * (P 1 - W'.negY P) ^ 2 - 2 * P 0 * P 2 * (P 1 - W'.negY P) ^ 2 - P 0 * P 2 * (P 1 - W'.negY P) ^ 2) + P 1 * P 2 ^ 2 * (P 1 - W'.negY P) ^ 3
himp_iff_imp._simp_1
Mathlib.Order.Heyting.Basic
βˆ€ (p q : Prop), p ⇨ q = (p β†’ q)
HasFiniteFPowerSeriesOnBall.rec
Mathlib.Analysis.Analytic.CPolynomialDef
{π•œ : Type u_1} β†’ {E : Type u_2} β†’ {F : Type u_3} β†’ [inst : NontriviallyNormedField π•œ] β†’ [inst_1 : NormedAddCommGroup E] β†’ [inst_2 : NormedSpace π•œ E] β†’ [inst_3 : NormedAddCommGroup F] β†’ [inst_4 : NormedSpace π•œ F] β†’ {f : E β†’ F} β†’ {p : FormalMultilinearSeries π•œ E F} β†’ {x : E} β†’ {n : β„•} β†’ {r : ENNReal} β†’ {motive : HasFiniteFPowerSeriesOnBall f p x n r β†’ Sort u} β†’ ((toHasFPowerSeriesOnBall : HasFPowerSeriesOnBall f p x r) β†’ (finite : βˆ€ (m : β„•), n ≀ m β†’ p m = 0) β†’ motive β‹―) β†’ (t : HasFiniteFPowerSeriesOnBall f p x n r) β†’ motive t
Set.biUnion_diff_biUnion_eq
Mathlib.Data.Set.Pairwise.Lattice
βˆ€ {Ξ± : Type u_1} {ΞΉ : Type u_2} {s t : Set ΞΉ} {f : ΞΉ β†’ Set Ξ±}, (s βˆͺ t).PairwiseDisjoint f β†’ (⋃ i ∈ s, f i) \ ⋃ i ∈ t, f i = ⋃ i ∈ s \ t, f i
_private.Mathlib.CategoryTheory.Limits.Shapes.Images.0.CategoryTheory.Limits.image.map_id._simp_1_1
Mathlib.CategoryTheory.Limits.Shapes.Images
βˆ€ {Ξ± : Sort u_1} [Subsingleton Ξ±] (x y : Ξ±), (x = y) = True
_private.Mathlib.Data.Finset.NAry.0.Finset.mem_imageβ‚‚._simp_1_2
Mathlib.Data.Finset.NAry
βˆ€ {a b c : Prop}, ((a ∧ b) ∧ c) = (a ∧ b ∧ c)
Mathlib.Tactic.WLOGResult.reductionGoal
Mathlib.Tactic.WLOG
Mathlib.Tactic.WLOGResult β†’ Lean.MVarId
NumberField.RingOfIntegers.mapAlgEquiv._proof_1
Mathlib.NumberTheory.NumberField.Basic
βˆ€ {k : Type u_2} {K : Type u_3} {L : Type u_4} {E : Type u_1} [inst : Field k] [inst_1 : Field K] [inst_2 : Field L] [inst_3 : Algebra k K] [inst_4 : Algebra k L] [inst_5 : EquivLike E K L] [AlgEquivClass E k K L], AlgHomClass E k K L
Std.HashMap.getD_eq_fallback_of_contains_eq_false
Std.Data.HashMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.HashMap Ξ± Ξ²} [EquivBEq Ξ±] [LawfulHashable Ξ±] {a : Ξ±} {fallback : Ξ²}, m.contains a = false β†’ m.getD a fallback = fallback
CategoryTheory.Functor.isoWhiskerRight_twice
Mathlib.CategoryTheory.Whiskering
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] {E : Type u₃} [inst_2 : CategoryTheory.Category.{v₃, u₃} E] {B : Type uβ‚„} [inst_3 : CategoryTheory.Category.{vβ‚„, uβ‚„} B] {H K : CategoryTheory.Functor B C} (F : CategoryTheory.Functor C D) (G : CategoryTheory.Functor D E) (Ξ± : H β‰… K), CategoryTheory.Functor.isoWhiskerRight (CategoryTheory.Functor.isoWhiskerRight Ξ± F) G = H.associator F G β‰ͺ≫ CategoryTheory.Functor.isoWhiskerRight Ξ± (F.comp G) β‰ͺ≫ (K.associator F G).symm
ContinuousMap.concat
Mathlib.Topology.ContinuousMap.Interval
{Ξ± : Type u_1} β†’ [inst : LinearOrder Ξ±] β†’ [inst_1 : TopologicalSpace Ξ±] β†’ [OrderTopology Ξ±] β†’ {a b c : Ξ±} β†’ [Fact (a ≀ b)] β†’ [Fact (b ≀ c)] β†’ {E : Type u_2} β†’ [inst_5 : TopologicalSpace E] β†’ C(↑(Set.Icc a b), E) β†’ C(↑(Set.Icc b c), E) β†’ C(↑(Set.Icc a c), E)
GaussianInt.abs_natCast_norm
Mathlib.NumberTheory.Zsqrtd.GaussianInt
βˆ€ (x : GaussianInt), ↑(Zsqrtd.norm x).natAbs = Zsqrtd.norm x
StarAlgEquiv.trans_apply
Mathlib.Algebra.Star.StarAlgHom
βˆ€ {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [inst : Add A] [inst_1 : Add B] [inst_2 : Mul A] [inst_3 : Mul B] [inst_4 : SMul R A] [inst_5 : SMul R B] [inst_6 : Star A] [inst_7 : Star B] [inst_8 : Add C] [inst_9 : Mul C] [inst_10 : SMul R C] [inst_11 : Star C] (e₁ : A ≃⋆ₐ[R] B) (eβ‚‚ : B ≃⋆ₐ[R] C) (x : A), (e₁.trans eβ‚‚) x = eβ‚‚ (e₁ x)
NNRat.instIsScalarTowerRight
Mathlib.Algebra.Ring.Action.Rat
βˆ€ {R : Type u_1} [inst : DivisionSemiring R], IsScalarTower β„šβ‰₯0 R R
Id.instLawfulMonadLiftTOfLawfulMonad
Init.Control.Lawful.MonadLift.Instances
βˆ€ {m : Type u β†’ Type v} [inst : Monad m] [LawfulMonad m], LawfulMonadLiftT Id m
DistribLattice.ctorIdx
Mathlib.Order.Lattice
{Ξ± : Type u_1} β†’ DistribLattice Ξ± β†’ β„•
RelIso.instGroup._proof_2
Mathlib.Algebra.Order.Group.End
βˆ€ {Ξ± : Type u_1} {r : Ξ± β†’ Ξ± β†’ Prop} (x : r ≃r r), 1 * x = x
Std.Tactic.BVDecide.BVExpr.replicate.injEq
Std.Tactic.BVDecide.Bitblast.BVExpr.Basic
βˆ€ {w w' : β„•} (n : β„•) (expr : Std.Tactic.BVDecide.BVExpr w) (h : w' = w * n) (w_1 n_1 : β„•) (expr_1 : Std.Tactic.BVDecide.BVExpr w_1) (h_1 : w' = w_1 * n_1), (Std.Tactic.BVDecide.BVExpr.replicate n expr h = Std.Tactic.BVDecide.BVExpr.replicate n_1 expr_1 h_1) = (w = w_1 ∧ n = n_1 ∧ expr ≍ expr_1)
Prod.map_iterate
Mathlib.Data.Prod.Basic
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} (f : Ξ± β†’ Ξ±) (g : Ξ² β†’ Ξ²) (n : β„•), (Prod.map f g)^[n] = Prod.map f^[n] g^[n]
WeierstrassCurve.Projective.addXYZ_Z
Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Formula
βˆ€ {R : Type r} [inst : CommRing R] {W' : WeierstrassCurve.Projective R} (P Q : Fin 3 β†’ R), W'.addXYZ P Q 2 = W'.addZ P Q
String.Legacy.Iterator.s
Init.Data.String.Iterator
String.Legacy.Iterator β†’ String
PseudoMetric.coe_le_coe
Mathlib.Topology.MetricSpace.BundledFun
βˆ€ {X : Type u_1} {R : Type u_2} [inst : Zero R] [inst_1 : Add R] [inst_2 : LE R] {d d' : PseudoMetric X R}, ⇑d ≀ ⇑d' ↔ d ≀ d'
AlgebraicGeometry.morphismRestrictStalkMap._proof_2
Mathlib.AlgebraicGeometry.Restrict
βˆ€ {X Y : AlgebraicGeometry.Scheme} (f : X ⟢ Y) (U : Y.Opens) (x : β†₯↑((TopologicalSpace.Opens.map f.base).obj U)), CategoryTheory.CategoryStruct.comp (U.stalkIso ((CategoryTheory.ConcreteCategory.hom (f ∣_ U).base) x) β‰ͺ≫ Y.presheaf.stalkCongr β‹―).hom (AlgebraicGeometry.Scheme.Hom.stalkMap f ↑x) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.stalkMap (f ∣_ U) x) (((TopologicalSpace.Opens.map f.base).obj U).stalkIso x).hom
CategoryTheory.NatTrans.naturality
Mathlib.CategoryTheory.NatTrans
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] {F G : CategoryTheory.Functor C D} (self : CategoryTheory.NatTrans F G) ⦃X Y : C⦄ (f : X ⟢ Y), CategoryTheory.CategoryStruct.comp (F.map f) (self.app Y) = CategoryTheory.CategoryStruct.comp (self.app X) (G.map f)
_private.Mathlib.Data.Finset.Union.0.Finset.bind_toFinset._simp_1_2
Mathlib.Data.Finset.Union
βˆ€ {Ξ± : Type u_1} {Ξ² : Type v} {b : Ξ²} {s : Multiset Ξ±} {f : Ξ± β†’ Multiset Ξ²}, (b ∈ s.bind f) = βˆƒ a ∈ s, b ∈ f a
FreeSimplexQuiver.homRel.recOn
Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.Basic
βˆ€ {motive : ⦃X Y : CategoryTheory.Paths FreeSimplexQuiver⦄ β†’ (a a_1 : X ⟢ Y) β†’ FreeSimplexQuiver.homRel a a_1 β†’ Prop} ⦃X Y : CategoryTheory.Paths FreeSimplexQuiver⦄ {a a_1 : X ⟢ Y} (t : FreeSimplexQuiver.homRel a a_1), (βˆ€ {n : β„•} {i j : Fin (n + 2)} (H : i ≀ j), motive (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ j.succ))) (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ j)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i.castSucc))) β‹―) β†’ (βˆ€ {n : β„•} {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i ≀ j.castSucc), motive (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i.castSucc)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ j.succ))) (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ j)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i))) β‹―) β†’ (βˆ€ {n : β„•} {i : Fin (n + 1)}, motive (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i.castSucc)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ i))) (CategoryTheory.CategoryStruct.id ((CategoryTheory.Paths.of FreeSimplexQuiver).obj (FreeSimplexQuiver.mk n))) β‹―) β†’ (βˆ€ {n : β„•} {i : Fin (n + 1)}, motive (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i.succ)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ i))) (CategoryTheory.CategoryStruct.id ((CategoryTheory.Paths.of FreeSimplexQuiver).obj (FreeSimplexQuiver.mk n))) β‹―) β†’ (βˆ€ {n : β„•} {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i), motive (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i.succ)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ j.castSucc))) (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ j)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i))) β‹―) β†’ (βˆ€ {n : β„•} {i j : Fin (n + 1)} (H : i ≀ j), motive (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ i.castSucc)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ j))) (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ j.succ)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Οƒ i))) β‹―) β†’ motive a a_1 t
GrpCat.toAddGrp._proof_1
Mathlib.Algebra.Category.Grp.EquivalenceGroupAddGroup
βˆ€ (X : GrpCat), AddGrpCat.ofHom (MonoidHom.toAdditive (GrpCat.Hom.hom (CategoryTheory.CategoryStruct.id X))) = CategoryTheory.CategoryStruct.id (AddGrpCat.of (Additive ↑X))
Algebra.traceMatrix._proof_1
Mathlib.RingTheory.Trace.Basic
βˆ€ (A : Type u_1) [inst : CommRing A], SMulCommClass A A A
Real.strictAntiOn_rpow_Ioi_of_exponent_neg
Mathlib.Analysis.SpecialFunctions.Pow.Real
βˆ€ {r : ℝ}, r < 0 β†’ StrictAntiOn (fun x => x ^ r) (Set.Ioi 0)
antisymm_of
Mathlib.Order.Defs.Unbundled
βˆ€ {Ξ± : Type u_1} (r : Ξ± β†’ Ξ± β†’ Prop) [IsAntisymm Ξ± r] {a b : Ξ±}, r a b β†’ r b a β†’ a = b
isPurelyInseparable_iff
Mathlib.FieldTheory.PurelyInseparable.Basic
βˆ€ {F : Type u_1} {E : Type u_2} [inst : CommRing F] [inst_1 : Ring E] [inst_2 : Algebra F E], IsPurelyInseparable F E ↔ βˆ€ (x : E), IsIntegral F x ∧ (IsSeparable F x β†’ x ∈ (algebraMap F E).range)
instCommRingCorner._proof_12
Mathlib.RingTheory.Idempotents
βˆ€ {R : Type u_1} (e : R) [inst : NonUnitalCommRing R] (idem : IsIdempotentElem e) (n : β„•) (x : idem.Corner), Semiring.npow (n + 1) x = Semiring.npow n x * x
Cardinal.mk_finsupp_lift_of_infinite'
Mathlib.SetTheory.Cardinal.Finsupp
βˆ€ (Ξ± : Type u) (Ξ² : Type v) [Nonempty Ξ±] [inst : Zero Ξ²] [Infinite Ξ²], Cardinal.mk (Ξ± β†’β‚€ Ξ²) = max (Cardinal.lift.{v, u} (Cardinal.mk Ξ±)) (Cardinal.lift.{u, v} (Cardinal.mk Ξ²))
Batteries.PairingHeap.headI
Batteries.Data.PairingHeap
{Ξ± : Type u} β†’ {le : Ξ± β†’ Ξ± β†’ Bool} β†’ [Inhabited Ξ±] β†’ Batteries.PairingHeap Ξ± le β†’ Ξ±
ContinuousMap.instStar
Mathlib.Topology.ContinuousMap.Star
{Ξ± : Type u_2} β†’ {Ξ² : Type u_3} β†’ [inst : TopologicalSpace Ξ±] β†’ [inst_1 : TopologicalSpace Ξ²] β†’ [inst_2 : Star Ξ²] β†’ [ContinuousStar Ξ²] β†’ Star C(Ξ±, Ξ²)
FiberBundleCore.localTriv._proof_6
Mathlib.Topology.FiberBundle.Basic
βˆ€ {ΞΉ : Type u_1} {B : Type u_2} {F : Type u_3} [inst : TopologicalSpace B] [inst_1 : TopologicalSpace F] (Z : FiberBundleCore ΞΉ B F) (i : ΞΉ), βˆ€ p ∈ (Z.localTrivAsPartialEquiv i).source, (↑{ toPartialEquiv := Z.localTrivAsPartialEquiv i, open_source := β‹―, open_target := β‹―, continuousOn_toFun := β‹―, continuousOn_invFun := β‹― } p).1 = Z.proj p
antitoneOn_of_le_sub_one
Mathlib.Algebra.Order.SuccPred
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : PartialOrder Ξ±] [inst_1 : Preorder Ξ²] [inst_2 : Sub Ξ±] [inst_3 : One Ξ±] [inst_4 : PredSubOrder Ξ±] [IsPredArchimedean Ξ±] {s : Set Ξ±} {f : Ξ± β†’ Ξ²}, s.OrdConnected β†’ (βˆ€ (a : Ξ±), Β¬IsMin a β†’ a ∈ s β†’ a - 1 ∈ s β†’ f a ≀ f (a - 1)) β†’ AntitoneOn f s
_private.Mathlib.Computability.PostTuringMachine.0.Turing.TM1to1.stepAux_write._simp_1_2
Mathlib.Computability.PostTuringMachine
βˆ€ {a b : β„•}, (a.succ = b.succ) = (a = b)
CommGroup.toDistribLattice._proof_1
Mathlib.Algebra.Order.Group.Lattice
βˆ€ (Ξ± : Type u_1) [inst : Lattice Ξ±] [inst_1 : CommGroup Ξ±] [MulLeftMono Ξ±] (x y z : Ξ±), (x βŠ” y) βŠ“ (x βŠ” z) ≀ x βŠ” y βŠ“ z
Lean.Elab.Term.ToDepElimPattern.State._sizeOf_inst
Lean.Elab.Match
SizeOf Lean.Elab.Term.ToDepElimPattern.State
SimpleGraph.Hom.ofLE_apply
Mathlib.Combinatorics.SimpleGraph.Maps
βˆ€ {V : Type u_1} {G₁ Gβ‚‚ : SimpleGraph V} (h : G₁ ≀ Gβ‚‚) (v : V), (SimpleGraph.Hom.ofLE h) v = v
AdjoinRoot.instNumberFieldRat
Mathlib.NumberTheory.NumberField.Basic
βˆ€ {f : Polynomial β„š} [hf : Fact (Irreducible f)], NumberField (AdjoinRoot f)
Int.le_add_of_sub_left_le
Init.Data.Int.Order
βˆ€ {a b c : β„€}, a - b ≀ c β†’ a ≀ b + c
Lean.ResolveName.resolveNamespaceUsingOpenDecls
Lean.ResolveName
Lean.Environment β†’ Lean.Name β†’ List Lean.OpenDecl β†’ List Lean.Name
_private.Mathlib.Algebra.DirectSum.Basic.0.DirectSum.map_eq_iff._simp_1_1
Mathlib.Algebra.DirectSum.Basic
βˆ€ {ΞΉ : Type v} {Ξ² : ΞΉ β†’ Type w} [inst : (i : ΞΉ) β†’ AddCommMonoid (Ξ² i)] {x y : DirectSum ΞΉ Ξ²}, (x = y) = βˆ€ (i : ΞΉ), x i = y i
SkewMonoidAlgebra.algHom_ext
Mathlib.Algebra.SkewMonoidAlgebra.Basic
βˆ€ {k : Type u_1} {G : Type u_2} [inst : Monoid G] [inst_1 : CommSemiring k] {A : Type u_3} [inst_2 : Semiring A] [inst_3 : Algebra k A] [inst_4 : MulSemiringAction G k] [inst_5 : SMulCommClass G k k] ⦃φ₁ Ο†β‚‚ : SkewMonoidAlgebra k G →ₐ[k] A⦄, (βˆ€ (x : G), φ₁ (SkewMonoidAlgebra.single x 1) = Ο†β‚‚ (SkewMonoidAlgebra.single x 1)) β†’ φ₁ = Ο†β‚‚
Mathlib.Meta.FunProp.LambdaTheoremArgs.ctorIdx
Mathlib.Tactic.FunProp.Theorems
Mathlib.Meta.FunProp.LambdaTheoremArgs β†’ β„•
_private.Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex.0.Complex.cos_eq_cos_iff._simp_1_3
Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex
βˆ€ {G : Type u_3} [inst : AddGroup G] {a b c : G}, (a - b = c) = (a = c + b)
Algebra.FormallyUnramified.localization_base
Mathlib.RingTheory.Unramified.Basic
βˆ€ {R : Type u_1} {Rβ‚˜ : Type u_3} {Sβ‚˜ : Type u_4} [inst : CommRing R] [inst_1 : CommRing Rβ‚˜] [inst_2 : CommRing Sβ‚˜] (M : Submonoid R) [inst_3 : Algebra R Sβ‚˜] [inst_4 : Algebra R Rβ‚˜] [inst_5 : Algebra Rβ‚˜ Sβ‚˜] [IsScalarTower R Rβ‚˜ Sβ‚˜] [Algebra.FormallyUnramified R Sβ‚˜], Algebra.FormallyUnramified Rβ‚˜ Sβ‚˜
_private.Batteries.Data.MLList.Basic.0.MLList.specImpl
Batteries.Data.MLList.Basic
(m : Type u_1 β†’ Type u_1) β†’ MLList.Spec✝ m
Lean.Omega.LinearCombo.sub
Init.Omega.LinearCombo
Lean.Omega.LinearCombo β†’ Lean.Omega.LinearCombo β†’ Lean.Omega.LinearCombo
AddCommMonCat.FilteredColimits.M
Mathlib.Algebra.Category.MonCat.FilteredColimits
{J : Type v} β†’ [inst : CategoryTheory.SmallCategory J] β†’ [CategoryTheory.IsFiltered J] β†’ CategoryTheory.Functor J AddCommMonCat β†’ AddMonCat
Vector.findFinIdx?_singleton._proof_1
Init.Data.Vector.Find
βˆ€ {Ξ± : Type u_1} {a : Ξ±}, 0 < #[a].size
_private.Std.Time.Date.ValidDate.0.Std.Time.ValidDate.ofOrdinal._proof_6
Std.Time.Date.ValidDate
βˆ€ (idx : Std.Time.Month.Ordinal) (acc : β„€), 12 ≀ ↑idx β†’ βˆ€ (ordinal : Std.Time.Day.Ordinal.OfYear true), ↑ordinal ≀ 366 β†’ 366 < ↑ordinal β†’ False
_private.Mathlib.Data.Nat.Cast.NeZero.0.NeZero.one_le._proof_1_1
Mathlib.Data.Nat.Cast.NeZero
βˆ€ {n : β„•}, n β‰  0 β†’ 1 ≀ n
CategoryTheory.Preadditive.toCommGrp_obj_grp
Mathlib.CategoryTheory.Preadditive.CommGrp_
βˆ€ (C : Type u) [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C] [inst_2 : CategoryTheory.CartesianMonoidalCategory C] [inst_3 : CategoryTheory.BraidedCategory C] (X : C), ((CategoryTheory.Preadditive.toCommGrp C).obj X).grp = CategoryTheory.Preadditive.instGrpObj X
Plausible.Gen.oneOfWithDefault
Plausible.Gen
{Ξ± : Type} β†’ Plausible.Gen Ξ± β†’ List (Plausible.Gen Ξ±) β†’ Plausible.Gen Ξ±
CategoryTheory.FinCategory.objAsTypeToAsType
Mathlib.CategoryTheory.FinCategory.AsType
(Ξ± : Type u_1) β†’ [inst : Fintype Ξ±] β†’ [inst_1 : CategoryTheory.SmallCategory Ξ±] β†’ [inst_2 : CategoryTheory.FinCategory Ξ±] β†’ CategoryTheory.Functor (CategoryTheory.FinCategory.ObjAsType Ξ±) (CategoryTheory.FinCategory.AsType Ξ±)
CategoryTheory.Limits.FormalCoproduct.homPullbackEquiv._proof_4
Mathlib.CategoryTheory.Limits.FormalCoproducts
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {X Y Z : CategoryTheory.Limits.FormalCoproduct C} (f : X ⟢ Z) (g : Y ⟢ Z) (T : CategoryTheory.Limits.FormalCoproduct C) (s : { p // CategoryTheory.CategoryStruct.comp p.1 f = CategoryTheory.CategoryStruct.comp p.2 g }) (i : T.I), CategoryTheory.CategoryStruct.comp ((↑s).1.Ο† i) (CategoryTheory.CategoryStruct.comp (f.Ο† (β†‘βŸ¨((↑s).1.f i, (↑s).2.f i), β‹―βŸ©).1) (CategoryTheory.eqToHom β‹―)) = CategoryTheory.CategoryStruct.comp ((↑s).2.Ο† i) (g.Ο† (β†‘βŸ¨((↑s).1.f i, (↑s).2.f i), β‹―βŸ©).2)
Lean.Server.FileWorker.WorkerState.importCachingTask?
Lean.Server.FileWorker
Lean.Server.FileWorker.WorkerState β†’ Option (Lean.Server.ServerTask (Except IO.Error Lean.Server.FileWorker.AvailableImportsCache))
LinearOrder.mkOfAddGroupCone.eq_1
Mathlib.Algebra.Order.Group.Cone
βˆ€ {S : Type u_1} {G : Type u_2} [inst : AddCommGroup G] [inst_1 : SetLike S G] (C : S) [inst_2 : AddGroupConeClass S G] [inst_3 : HasMemOrNegMem C] [inst_4 : DecidablePred fun x => x ∈ C], LinearOrder.mkOfAddGroupCone C = { toPartialOrder := PartialOrder.mkOfAddGroupCone C, min := fun a b => if a ≀ b then a else b, max := fun a b => if a ≀ b then b else a, compare := fun a b => compareOfLessAndEq a b, le_total := β‹―, toDecidableLE := fun x b => inst_4 (b - x), toDecidableEq := decidableEqOfDecidableLE, toDecidableLT := decidableLTOfDecidableLE, min_def := β‹―, max_def := β‹―, compare_eq_compareOfLessAndEq := β‹― }