name
stringlengths 2
347
| module
stringlengths 6
90
| type
stringlengths 1
5.42M
|
|---|---|---|
PEquiv.trans_assoc
|
Mathlib.Data.PEquiv
|
β {Ξ± : Type u} {Ξ² : Type v} {Ξ³ : Type w} {Ξ΄ : Type x} (f : Ξ± β. Ξ²) (g : Ξ² β. Ξ³) (h : Ξ³ β. Ξ΄),
(f.trans g).trans h = f.trans (g.trans h)
|
Path.Homotopic.proj.eq_1
|
Mathlib.Topology.Homotopy.Product
|
β {ΞΉ : Type u_1} {X : ΞΉ β Type u_2} [inst : (i : ΞΉ) β TopologicalSpace (X i)] {as bs : (i : ΞΉ) β X i} (i : ΞΉ)
(p : Path.Homotopic.Quotient as bs), Path.Homotopic.proj i p = p.map { toFun := fun p => p i, continuous_toFun := β― }
|
UInt16.ofInt_one
|
Init.Data.UInt.Lemmas
|
UInt16.ofInt 1 = 1
|
FormalMultilinearSeries.id._proof_4
|
Mathlib.Analysis.Analytic.Composition
|
β (π : Type u_1) (E : Type u_2) [inst : NontriviallyNormedField π] [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace π E], ContinuousConstSMul π E
|
Equiv.Perm.Basis.toCentralizer_apply
|
Mathlib.GroupTheory.Perm.Centralizer
|
β {Ξ± : Type u_1} [inst : DecidableEq Ξ±] [inst_1 : Fintype Ξ±] {g : Equiv.Perm Ξ±} (a : g.Basis)
(Ο : β₯(Equiv.Perm.OnCycleFactors.range_toPermHom' g)) (x : Ξ±), β(a.toCentralizer Ο) x = a.ofPermHomFun Ο x
|
_private.Lean.Meta.InferType.0.Lean.Meta.isProofQuickApp
|
Lean.Meta.InferType
|
Lean.Expr β β β Lean.MetaM Lean.LBool
|
ClopenUpperSet.ext_iff
|
Mathlib.Topology.Sets.Order
|
β {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] [inst_1 : LE Ξ±] {s t : ClopenUpperSet Ξ±}, s = t β βs = βt
|
Equiv.ext_iff
|
Mathlib.Logic.Equiv.Defs
|
β {Ξ± : Sort u} {Ξ² : Sort v} {f g : Ξ± β Ξ²}, f = g β β (x : Ξ±), f x = g x
|
Std.Tactic.BVDecide.BVExpr.bitblast.blastMul.blast
|
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Mul
|
{Ξ± : Type} β
[inst : Hashable Ξ±] β
[inst_1 : DecidableEq Ξ±] β {w : β} β (aig : Std.Sat.AIG Ξ±) β aig.BinaryRefVec w β Std.Sat.AIG.RefVecEntry Ξ± w
|
Std.Internal.List.Const.getKeyD_modifyKey_self
|
Std.Data.Internal.List.Associative
|
β {Ξ± : Type u} {Ξ² : Type v} [inst : BEq Ξ±] [EquivBEq Ξ±] {k fallback : Ξ±} {f : Ξ² β Ξ²} (l : List ((_ : Ξ±) Γ Ξ²)),
Std.Internal.List.DistinctKeys l β
Std.Internal.List.getKeyD k (Std.Internal.List.Const.modifyKey k f l) fallback =
if Std.Internal.List.containsKey k l = true then k else fallback
|
String.Slice.Pattern.ForwardSliceSearcher.instToForwardSearcher
|
Init.Data.String.Pattern.String
|
String.Slice.Pattern.ToForwardSearcher String.Slice String.Slice.Pattern.ForwardSliceSearcher
|
TopCat.GlueData.MkCore.cocycle
|
Mathlib.Topology.Gluing
|
β (self : TopCat.GlueData.MkCore) (i j k : self.J) (x : β₯(self.V i j)) (h : βx β self.V i k),
β((CategoryTheory.ConcreteCategory.hom (self.t j k)) β¨β((CategoryTheory.ConcreteCategory.hom (self.t i j)) x), β―β©) =
β((CategoryTheory.ConcreteCategory.hom (self.t i k)) β¨βx, hβ©)
|
MonCat.Colimits.monoidColimitType._proof_2
|
Mathlib.Algebra.Category.MonCat.Colimits
|
β {J : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} J] (F : CategoryTheory.Functor J MonCat)
(q : Quotient (MonCat.Colimits.colimitSetoid F)) (b c : MonCat.Colimits.ColimitType F), q * b * c = q * (b * c)
|
Lean.Meta.Grind.assertNext
|
Lean.Meta.Tactic.Grind.Intro
|
Lean.Meta.Grind.SearchM Bool
|
_private.Mathlib.Data.Countable.Defs.0.Finite.to_countable.match_1
|
Mathlib.Data.Countable.Defs
|
β {Ξ± : Sort u_1} (motive : (β n, Nonempty (Ξ± β Fin n)) β Prop) (x : β n, Nonempty (Ξ± β Fin n)),
(β (w : β) (e : Ξ± β Fin w), motive β―) β motive x
|
LocallyConstant.instAddGroup._proof_6
|
Mathlib.Topology.LocallyConstant.Algebra
|
β {X : Type u_1} {Y : Type u_2} [inst : TopologicalSpace X] [inst_1 : AddGroup Y] (x : LocallyConstant X Y) (x_1 : β€),
β(x_1 β’ x) = β(x_1 β’ x)
|
NormedAddGroupHom.toAddMonoidHomClass
|
Mathlib.Analysis.Normed.Group.Hom
|
β {Vβ : Type u_2} {Vβ : Type u_3} [inst : SeminormedAddCommGroup Vβ] [inst_1 : SeminormedAddCommGroup Vβ],
AddMonoidHomClass (NormedAddGroupHom Vβ Vβ) Vβ Vβ
|
WType.instEncodable
|
Mathlib.Data.W.Basic
|
{Ξ± : Type u_1} β
{Ξ² : Ξ± β Type u_2} β [(a : Ξ±) β Fintype (Ξ² a)] β [(a : Ξ±) β Encodable (Ξ² a)] β [Encodable Ξ±] β Encodable (WType Ξ²)
|
Module.supportDim_le_of_surjective
|
Mathlib.RingTheory.KrullDimension.Module
|
β {R : Type u_1} [inst : CommRing R] {M : Type u_2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] {N : Type u_3}
[inst_3 : AddCommGroup N] [inst_4 : Module R N] (f : M ββ[R] N),
Function.Surjective βf β Module.supportDim R N β€ Module.supportDim R M
|
Matroid.cRk_map_eq
|
Mathlib.Combinatorics.Matroid.Rank.Cardinal
|
β {Ξ± Ξ² : Type u} {f : Ξ± β Ξ²} {X : Set Ξ²} (M : Matroid Ξ±) (hf : Set.InjOn f M.E), (M.map f hf).cRk X = M.cRk (f β»ΒΉ' X)
|
Subarray.size_le_array_size
|
Init.Data.Array.Subarray
|
β {Ξ± : Type u_1} {s : Subarray Ξ±}, s.size β€ s.array.size
|
Equiv.sumSigmaDistrib_symm_apply
|
Mathlib.Logic.Equiv.Sum
|
β {Ξ± : Type u_10} {Ξ² : Type u_11} (t : Ξ± β Ξ² β Type u_9) (a : (i : Ξ±) Γ t (Sum.inl i) β (i : Ξ²) Γ t (Sum.inr i)),
(Equiv.sumSigmaDistrib t).symm a = Sum.elim (fun a => β¨Sum.inl a.fst, a.sndβ©) (fun b => β¨Sum.inr b.fst, b.sndβ©) a
|
_private.Mathlib.Order.Atoms.0.IsAtomic.Set.Iic.isAtomic.match_1
|
Mathlib.Order.Atoms
|
β {Ξ± : Type u_1} [inst : PartialOrder Ξ±] [inst_1 : OrderBot Ξ±] (y : Ξ±) (motive : (β a, IsAtom a β§ a β€ y) β Prop)
(x : β a, IsAtom a β§ a β€ y), (β (a : Ξ±) (ha : IsAtom a) (hay : a β€ y), motive β―) β motive x
|
Lean.Elab.Tactic.BVDecide.Frontend.TacticContext.ctorIdx
|
Lean.Elab.Tactic.BVDecide.Frontend.LRAT
|
Lean.Elab.Tactic.BVDecide.Frontend.TacticContext β β
|
Lean.Widget.RpcEncodablePacket.Β«_@Β».Lean.Widget.InteractiveGoal.562241082._hygCtx._hyg.1.rec
|
Lean.Widget.InteractiveGoal
|
{motive : Lean.Widget.RpcEncodablePacketβ β Sort u} β
((names fvarIds type : Lean.Json) β
(val? isInstance? isType? isInserted? isRemoved? : Option Lean.Json) β
motive
{ names := names, fvarIds := fvarIds, type := type, val? := val?, isInstance? := isInstance?,
isType? := isType?, isInserted? := isInserted?, isRemoved? := isRemoved? }) β
(t : Lean.Widget.RpcEncodablePacketβ) β motive t
|
Int.sub_lt_self
|
Init.Data.Int.Order
|
β (a : β€) {b : β€}, 0 < b β a - b < a
|
Commute.eq
|
Mathlib.Algebra.Group.Commute.Defs
|
β {S : Type u_3} [inst : Mul S] {a b : S}, Commute a b β a * b = b * a
|
AddSubmonoid.addUnitsEquivAddUnitsType._proof_3
|
Mathlib.Algebra.Group.Submonoid.Units
|
β {M : Type u_1} [inst : AddMonoid M] (S : AddSubmonoid M) (x : AddUnits β₯S),
{ val := ββx, neg := ββ(-x), val_neg := β―, neg_val := β― } β β(AddSubmonoid.comap (AddUnits.coeHom M) S) β§
{ val := ββx, neg := ββ(-x), val_neg := β―, neg_val := β― } β β(-AddSubmonoid.comap (AddUnits.coeHom M) S)
|
TopologicalSpace.Opens.frameMinimalAxioms._proof_4
|
Mathlib.Topology.Sets.Opens
|
β {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] (a : TopologicalSpace.Opens Ξ±) (s : Set (TopologicalSpace.Opens Ξ±)),
a β sSup s β€ β¨ b β s, a β b
|
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.get?_eq_some_iff._simp_1_3
|
Std.Data.DTreeMap.Internal.Lemmas
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} {x : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} {k : Ξ±},
(k β t) = (Std.DTreeMap.Internal.Impl.contains k t = true)
|
_private.Batteries.Data.List.Lemmas.0.List.getElem_filter_eq_getElem_getElem_findIdxs_sub._proof_1_30
|
Batteries.Data.List.Lemmas
|
β {Ξ± : Type u_1} {p : Ξ± β Bool} (head : Ξ±) (tail : List Ξ±) {i : β} (s : β)
(h : i + 1 β€ (List.filter p (head :: tail)).length),
(List.findIdxs p (head :: tail) s)[i] - (s + 1) + 1 β€ tail.length β
(List.findIdxs p (head :: tail) s)[i] - (s + 1) < tail.length
|
TensorProduct.smul_tmul
|
Mathlib.LinearAlgebra.TensorProduct.Basic
|
β {R : Type u_1} {R' : Type u_4} [inst : CommSemiring R] [inst_1 : Monoid R'] {M : Type u_7} {N : Type u_8}
[inst_2 : AddCommMonoid M] [inst_3 : AddCommMonoid N] [inst_4 : DistribMulAction R' M] [inst_5 : Module R M]
[inst_6 : Module R N] [inst_7 : DistribMulAction R' N] [TensorProduct.CompatibleSMul R R' M N] (r : R') (m : M)
(n : N), (r β’ m) ββ[R] n = m ββ[R] (r β’ n)
|
_private.Mathlib.RingTheory.Polynomial.Resultant.Basic.0.Polynomial.resultant_add_mul_monomial_right._proof_1_25
|
Mathlib.RingTheory.Polynomial.Resultant.Basic
|
β {R : Type u_1} [inst : CommRing R] (f g : Polynomial R) (r : R) (m n k : β) (hk : k + m β€ n) (hf : f.natDegree β€ m)
(hm : m β 0) (jβ : Fin (m + n)) (jβ : Fin m)
(IH :
β(Fin.castAdd n jβ) β€ m β
((fun i =>
Matrix.of fun jβ jβ =>
if βjβ < i then f.sylvester (g + f * (Polynomial.monomial k) r) m n jβ jβ else f.sylvester g m n jβ jβ)
β(Fin.castAdd n jβ)).det =
(f.sylvester g m n).det)
(hi : βjβ + 1 β€ m),
β¨βjβ + (k + m), β―β© = Fin.natAdd m β¨βjβ + k, β―β© β
(βjβ β€ βjβ β§ βjβ β€ βjβ + n) β§ k β€ βjβ - βjβ β Β¬(βjβ + k β€ βjβ β§ βjβ β€ βjβ + (k + m)) β m < βjβ - βjβ - k
|
MeasurableSet.mem
|
Mathlib.MeasureTheory.MeasurableSpace.Constructions
|
β {Ξ± : Type u_1} {s : Set Ξ±} [inst : MeasurableSpace Ξ±], MeasurableSet s β Measurable fun x => x β s
|
dist_pi_const_le
|
Mathlib.Topology.MetricSpace.Pseudo.Pi
|
β {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : PseudoMetricSpace Ξ±] [inst_1 : Fintype Ξ²] (a b : Ξ±),
(dist (fun x => a) fun x => b) β€ dist a b
|
_private.Mathlib.Topology.Algebra.Polynomial.0.Polynomial.coeff_le_of_roots_le._simp_1_1
|
Mathlib.Topology.Algebra.Polynomial
|
β {Ξ± : Type u_1} {Ξ² : Type v} {f : Ξ± β Ξ²} {b : Ξ²} {s : Multiset Ξ±}, (b β Multiset.map f s) = β a β s, f a = b
|
_private.Mathlib.Analysis.InnerProductSpace.Defs.0.InnerProductSpace.Core.Β«_aux_Mathlib_Analysis_InnerProductSpace_Defs___macroRules__private_Mathlib_Analysis_InnerProductSpace_Defs_0_InnerProductSpace_Core_term_β _1Β»
|
Mathlib.Analysis.InnerProductSpace.Defs
|
Lean.Macro
|
_private.Mathlib.Computability.TMToPartrec.0.Turing.PartrecToTM2.trStmtsβ.match_1.eq_4
|
Mathlib.Computability.TMToPartrec
|
β (motive : Turing.PartrecToTM2.Ξ' β Sort u_1) (p : Turing.PartrecToTM2.Ξ' β Bool) (k : Turing.PartrecToTM2.K')
(q : Turing.PartrecToTM2.Ξ')
(h_1 :
(Q : Turing.PartrecToTM2.Ξ') β
(p : Turing.PartrecToTM2.Ξ' β Bool) β
(kβ kβ : Turing.PartrecToTM2.K') β
(q : Turing.PartrecToTM2.Ξ') β
Q = Turing.PartrecToTM2.Ξ'.move p kβ kβ q β motive (Turing.PartrecToTM2.Ξ'.move p kβ kβ q))
(h_2 :
(Q : Turing.PartrecToTM2.Ξ') β
(k : Turing.PartrecToTM2.K') β
(s : Option Turing.PartrecToTM2.Ξ' β Option Turing.PartrecToTM2.Ξ') β
(q : Turing.PartrecToTM2.Ξ') β
Q = Turing.PartrecToTM2.Ξ'.push k s q β motive (Turing.PartrecToTM2.Ξ'.push k s q))
(h_3 :
(Q : Turing.PartrecToTM2.Ξ') β
(q : Option Turing.PartrecToTM2.Ξ' β Turing.PartrecToTM2.Ξ') β
Q = Turing.PartrecToTM2.Ξ'.read q β motive (Turing.PartrecToTM2.Ξ'.read q))
(h_4 :
(Q : Turing.PartrecToTM2.Ξ') β
(p : Turing.PartrecToTM2.Ξ' β Bool) β
(k : Turing.PartrecToTM2.K') β
(q : Turing.PartrecToTM2.Ξ') β
Q = Turing.PartrecToTM2.Ξ'.clear p k q β motive (Turing.PartrecToTM2.Ξ'.clear p k q))
(h_5 : (Q q : Turing.PartrecToTM2.Ξ') β Q = q.copy β motive q.copy)
(h_6 : (Q q : Turing.PartrecToTM2.Ξ') β Q = q.succ β motive q.succ)
(h_7 : (Q qβ qβ : Turing.PartrecToTM2.Ξ') β Q = qβ.pred qβ β motive (qβ.pred qβ))
(h_8 :
(Q : Turing.PartrecToTM2.Ξ') β
(k : Turing.PartrecToTM2.Cont') β Q = Turing.PartrecToTM2.Ξ'.ret k β motive (Turing.PartrecToTM2.Ξ'.ret k)),
(match Turing.PartrecToTM2.Ξ'.clear p k q with
| Q@h:(Turing.PartrecToTM2.Ξ'.move p kβ kβ q) => h_1 Q p kβ kβ q h
| Q@h:(Turing.PartrecToTM2.Ξ'.push k s q) => h_2 Q k s q h
| Q@h:(Turing.PartrecToTM2.Ξ'.read q) => h_3 Q q h
| Q@h:(Turing.PartrecToTM2.Ξ'.clear p k q) => h_4 Q p k q h
| Q@h:q.copy => h_5 Q q h
| Q@h:q.succ => h_6 Q q h
| Q@h:(qβ.pred qβ) => h_7 Q qβ qβ h
| Q@h:(Turing.PartrecToTM2.Ξ'.ret k) => h_8 Q k h) =
h_4 (Turing.PartrecToTM2.Ξ'.clear p k q) p k q β―
|
Real.sign_eq_zero_iff._simp_1
|
Mathlib.Data.Real.Sign
|
β {r : β}, (r.sign = 0) = (r = 0)
|
minimal_nonempty_open_eq_singleton
|
Mathlib.Topology.Separation.Basic
|
β {X : Type u_1} [inst : TopologicalSpace X] [T0Space X] {s : Set X},
IsOpen s β s.Nonempty β (β t β s, t.Nonempty β IsOpen t β t = s) β β x, s = {x}
|
left_iff_dite_iff
|
Init.PropLemmas
|
β {p : Prop} [inst : Decidable p] {x : Prop} {y : Β¬p β Prop}, (x β if h : p then x else y h) β β (h : Β¬p), x β y h
|
GradedMonoid.list_prod_map_eq_dProd
|
Mathlib.Algebra.GradedMonoid
|
β {ΞΉ : Type u_1} {Ξ± : Type u_2} {A : ΞΉ β Type u_3} [inst : AddMonoid ΞΉ] [inst_1 : GradedMonoid.GMonoid A] (l : List Ξ±)
(f : Ξ± β GradedMonoid A),
(List.map f l).prod =
GradedMonoid.mk (l.dProdIndex fun i => (f i).fst) (l.dProd (fun i => (f i).fst) fun i => (f i).snd)
|
CategoryTheory.IsPullback.of_hasPullback
|
Mathlib.CategoryTheory.Limits.Shapes.Pullback.CommSq
|
β {C : Type uβ} [inst : CategoryTheory.Category.{vβ, uβ} C] {X Y Z : C} (f : X βΆ Z) (g : Y βΆ Z)
[inst_1 : CategoryTheory.Limits.HasPullback f g],
CategoryTheory.IsPullback (CategoryTheory.Limits.pullback.fst f g) (CategoryTheory.Limits.pullback.snd f g) f g
|
ProbabilityTheory.Kernel.IndepFun.comp
|
Mathlib.Probability.Independence.Kernel.IndepFun
|
β {Ξ± : Type u_1} {Ξ© : Type u_2} {Ξ² : Type u_4} {Ξ²' : Type u_5} {Ξ³ : Type u_6} {Ξ³' : Type u_7} {mΞ± : MeasurableSpace Ξ±}
{mΞ© : MeasurableSpace Ξ©} {ΞΊ : ProbabilityTheory.Kernel Ξ± Ξ©} {ΞΌ : MeasureTheory.Measure Ξ±} {f : Ξ© β Ξ²} {g : Ξ© β Ξ²'}
{mΞ² : MeasurableSpace Ξ²} {mΞ²' : MeasurableSpace Ξ²'} {mΞ³ : MeasurableSpace Ξ³} {mΞ³' : MeasurableSpace Ξ³'} {Ο : Ξ² β Ξ³}
{Ο : Ξ²' β Ξ³'},
ProbabilityTheory.Kernel.IndepFun f g ΞΊ ΞΌ β
Measurable Ο β Measurable Ο β ProbabilityTheory.Kernel.IndepFun (Ο β f) (Ο β g) ΞΊ ΞΌ
|
_private.Std.Data.Internal.List.Associative.0.Std.Internal.List.getKey_eraseKey._simp_1_1
|
Std.Data.Internal.List.Associative
|
β {Ξ± : Type u} {Ξ² : Ξ± β Type v} [inst : BEq Ξ±] {l : List ((a : Ξ±) Γ Ξ² a)} {a : Ξ±}
(h : Std.Internal.List.containsKey a l = true), some (Std.Internal.List.getKey a l h) = Std.Internal.List.getKey? a l
|
CategoryTheory.Under.pushout_obj
|
Mathlib.CategoryTheory.Comma.Over.Pullback
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y : C} (f : X βΆ Y)
[inst_1 : CategoryTheory.Limits.HasPushoutsAlong f] (x : CategoryTheory.Under X),
(CategoryTheory.Under.pushout f).obj x = CategoryTheory.Under.mk (CategoryTheory.Limits.pushout.inr x.hom f)
|
Order.height_toDual
|
Mathlib.Order.KrullDimension
|
β {Ξ± : Type u_1} [inst : Preorder Ξ±] (x : Ξ±), Order.height (OrderDual.toDual x) = Order.coheight x
|
AddLocalization.ind
|
Mathlib.GroupTheory.MonoidLocalization.Basic
|
β {M : Type u_1} [inst : AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization S β Prop},
(β (y : M Γ β₯S), p (AddLocalization.mk y.1 y.2)) β β (x : AddLocalization S), p x
|
ProbabilityTheory.Kernel.partialTraj_comp_partialTraj
|
Mathlib.Probability.Kernel.IonescuTulcea.PartialTraj
|
β {X : β β Type u_1} {mX : (n : β) β MeasurableSpace (X n)} {a b c : β}
{ΞΊ : (n : β) β ProbabilityTheory.Kernel ((i : β₯(Finset.Iic n)) β X βi) (X (n + 1))},
a β€ b β
b β€ c β
(ProbabilityTheory.Kernel.partialTraj ΞΊ b c).comp (ProbabilityTheory.Kernel.partialTraj ΞΊ a b) =
ProbabilityTheory.Kernel.partialTraj ΞΊ a c
|
Ordinal.bsup_le
|
Mathlib.SetTheory.Ordinal.Family
|
β {o : Ordinal.{u}} {f : (b : Ordinal.{u}) β b < o β Ordinal.{max u v}} {a : Ordinal.{max u v}},
(β (i : Ordinal.{u}) (h : i < o), f i h β€ a) β o.bsup f β€ a
|
Lean.Elab.TacticInfo.goalsBefore
|
Lean.Elab.InfoTree.Types
|
Lean.Elab.TacticInfo β List Lean.MVarId
|
RingOfIntegers.exponent
|
Mathlib.NumberTheory.NumberField.Ideal.KummerDedekind
|
{K : Type u_1} β [inst : Field K] β NumberField.RingOfIntegers K β β
|
ContMDiff.piecewise
|
Mathlib.Geometry.Manifold.ContMDiff.Basic
|
β {π : Type u_1} [inst : NontriviallyNormedField π] {E : Type u_2} [inst_1 : NormedAddCommGroup E]
[inst_2 : NormedSpace π E] {H : Type u_3} [inst_3 : TopologicalSpace H] {I : ModelWithCorners π E H} {M : Type u_4}
[inst_4 : TopologicalSpace M] {E' : Type u_5} [inst_5 : NormedAddCommGroup E'] [inst_6 : NormedSpace π E']
{H' : Type u_6} [inst_7 : TopologicalSpace H'] {I' : ModelWithCorners π E' H'} {M' : Type u_7}
[inst_8 : TopologicalSpace M'] [inst_9 : ChartedSpace H M] [inst_10 : ChartedSpace H' M'] {n : WithTop ββ}
{f g : M β M'} {s : Set M} [inst_11 : DecidablePred fun x => x β s],
ContMDiff I I' n f β ContMDiff I I' n g β (β x β frontier s, f =αΆ [nhds x] g) β ContMDiff I I' n (s.piecewise f g)
|
FirstOrder.Language.mk.injEq
|
Mathlib.ModelTheory.Basic
|
β (Functions : β β Type u) (Relations : β β Type v) (Functions_1 : β β Type u) (Relations_1 : β β Type v),
({ Functions := Functions, Relations := Relations } = { Functions := Functions_1, Relations := Relations_1 }) =
(Functions = Functions_1 β§ Relations = Relations_1)
|
Mathlib.Tactic.Linarith.LinarithConfig.splitHypotheses._default
|
Mathlib.Tactic.Linarith.Frontend
|
Bool
|
LLVM.Visibility._sizeOf_1
|
Lean.Compiler.IR.LLVMBindings
|
LLVM.Visibility β β
|
NonUnitalCommRing.toNonUnitalCommSemiring._proof_2
|
Mathlib.Algebra.Ring.Defs
|
β {Ξ± : Type u_1} [s : NonUnitalCommRing Ξ±] (a b c : Ξ±), a * (b + c) = a * b + a * c
|
Lean.removeRoot
|
Lean.Data.OpenDecl
|
Lean.Name β Lean.Name
|
_private.Std.Data.DHashMap.Internal.AssocList.Lemmas.0.Std.DHashMap.Internal.AssocList.Const.alter.match_1.eq_1
|
Std.Data.DHashMap.Internal.AssocList.Lemmas
|
β {Ξ² : Type u_1} (motive : Option Ξ² β Sort u_2) (h_1 : Unit β motive none) (h_2 : (b : Ξ²) β motive (some b)),
(match none with
| none => h_1 ()
| some b => h_2 b) =
h_1 ()
|
CategoryTheory.inclusion
|
Mathlib.CategoryTheory.ConnectedComponents
|
{J : Type uβ} β
[inst : CategoryTheory.Category.{vβ, uβ} J] β
(j : CategoryTheory.ConnectedComponents J) β CategoryTheory.Functor j.Component (CategoryTheory.Decomposed J)
|
ContDiffMapSupportedInClass.casesOn
|
Mathlib.Analysis.Distribution.ContDiffMapSupportedIn
|
{B : Type u_5} β
{E : Type u_6} β
{F : Type u_7} β
[inst : NormedAddCommGroup E] β
[inst_1 : NormedAddCommGroup F] β
[inst_2 : NormedSpace β E] β
[inst_3 : NormedSpace β F] β
{n : ββ} β
{K : TopologicalSpace.Compacts E} β
{motive : ContDiffMapSupportedInClass B E F n K β Sort u} β
(t : ContDiffMapSupportedInClass B E F n K) β
([toDFunLike : DFunLike B E fun x => F] β
(map_contDiff : β (f : B), ContDiff β βn βf) β
(map_zero_on_compl : β (f : B), Set.EqOn (βf) 0 (βK)αΆ) β
motive
{ toDFunLike := toDFunLike, map_contDiff := map_contDiff,
map_zero_on_compl := map_zero_on_compl }) β
motive t
|
Lean.Meta.Cache._sizeOf_1
|
Lean.Meta.Basic
|
Lean.Meta.Cache β β
|
ExteriorAlgebra.lift_symm_apply
|
Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
|
β (R : Type u1) [inst : CommRing R] {M : Type u2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] {A : Type u_1}
[inst_3 : Semiring A] [inst_4 : Algebra R A] (a : ExteriorAlgebra R M ββ[R] A),
(ExteriorAlgebra.lift R).symm a = β¨β((CliffordAlgebra.lift 0).symm a), β―β©
|
monovary_inv_right._simp_4
|
Mathlib.Algebra.Order.Monovary
|
β {ΞΉ : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : PartialOrder Ξ±] [inst_1 : AddCommGroup Ξ²]
[inst_2 : PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] {f : ΞΉ β Ξ±} {g : ΞΉ β Ξ²}, Monovary f (-g) = Antivary f g
|
Mathlib.Tactic.IntervalCases.Methods.bisect._unsafe_rec
|
Mathlib.Tactic.IntervalCases
|
Mathlib.Tactic.IntervalCases.Methods β
Lean.MVarId β
Subarray Mathlib.Tactic.IntervalCases.IntervalCasesSubgoal β
Mathlib.Tactic.IntervalCases.Bound β
Mathlib.Tactic.IntervalCases.Bound β Lean.Expr β Lean.Expr β Lean.Expr β Lean.Expr β Lean.Expr β Lean.MetaM Unit
|
_private.Mathlib.NumberTheory.FermatPsp.0.Nat.exists_infinite_pseudoprimes._proof_1_6
|
Mathlib.NumberTheory.FermatPsp
|
β {b : β} (m : β), Β¬2 β€ b β b = 1 β Β¬Nat.Prime (2 * (m + 2)) β 1 < 2 * (m + 2)
|
Mathlib.Tactic.RingNF.RingMode.ctorElimType
|
Mathlib.Tactic.Ring.RingNF
|
{motive : Mathlib.Tactic.RingNF.RingMode β Sort u} β β β Sort (max 1 u)
|
Complex.lim_re
|
Mathlib.Analysis.Complex.Norm
|
β (f : CauSeq β fun x => βxβ), (Complex.cauSeqRe f).lim = f.lim.re
|
enorm_prod_le_of_le
|
Mathlib.Analysis.Normed.Group.Basic
|
β {ΞΉ : Type u_3} {Ξ΅ : Type u_8} [inst : TopologicalSpace Ξ΅] [inst_1 : ESeminormedCommMonoid Ξ΅] (s : Finset ΞΉ)
{f : ΞΉ β Ξ΅} {n : ΞΉ β ENNReal}, (β b β s, βf bββ β€ n b) β ββ b β s, f bββ β€ β b β s, n b
|
_private.Mathlib.Analysis.Hofer.0._aux_Mathlib_Analysis_Hofer___macroRules__private_Mathlib_Analysis_Hofer_0_termD_1
|
Mathlib.Analysis.Hofer
|
Lean.Macro
|
_private.Mathlib.Data.Nat.Factorization.Basic.0.Nat.Ico_pow_dvd_eq_Ico_of_lt._simp_1_3
|
Mathlib.Data.Nat.Factorization.Basic
|
β {a c b : Prop}, (a β§ c β b β§ c) = (c β (a β b))
|
Lean.Elab.Term.ToDepElimPattern.State
|
Lean.Elab.Match
|
Type
|
_private.Mathlib.Order.Directed.0.directedOn_iff_directed._simp_1_5
|
Mathlib.Order.Directed
|
β {b a : Prop}, (β (_ : a), b) = (a β§ b)
|
MonoidHom.CompTriple.IsId.eq_id
|
Mathlib.Algebra.Group.Hom.CompTypeclasses
|
β {M : Type u_1} {inst : Monoid M} {Ο : M β* M} [self : MonoidHom.CompTriple.IsId Ο], Ο = MonoidHom.id M
|
Equiv.prodPiEquivSumPi_apply
|
Mathlib.Logic.Equiv.Prod
|
β {ΞΉ : Type u_9} {ΞΉ' : Type u_10} (Ο : ΞΉ β Type u) (Ο' : ΞΉ' β Type u)
(a : ((i : ΞΉ) β Sum.elim Ο Ο' (Sum.inl i)) Γ ((i' : ΞΉ') β Sum.elim Ο Ο' (Sum.inr i'))) (i : ΞΉ β ΞΉ'),
(Equiv.prodPiEquivSumPi Ο Ο') a i = (Equiv.sumPiEquivProdPi (Sum.elim Ο Ο')).symm a i
|
CategoryTheory.Functor.descOfIsLeftKanExtension_fac_app
|
Mathlib.CategoryTheory.Functor.KanExtension.Basic
|
β {C : Type u_1} {H : Type u_3} {D : Type u_4} [inst : CategoryTheory.Category.{u_8, u_1} C]
[inst_1 : CategoryTheory.Category.{u_7, u_3} H] [inst_2 : CategoryTheory.Category.{u_6, u_4} D]
(F' : CategoryTheory.Functor D H) {L : CategoryTheory.Functor C D} {F : CategoryTheory.Functor C H}
(Ξ± : F βΆ L.comp F') [inst_3 : F'.IsLeftKanExtension Ξ±] (G : CategoryTheory.Functor D H) (Ξ² : F βΆ L.comp G) (X : C),
CategoryTheory.CategoryStruct.comp (Ξ±.app X) ((F'.descOfIsLeftKanExtension Ξ± G Ξ²).app (L.obj X)) = Ξ².app X
|
CategoryTheory.ShortComplex.LeftHomologyData.copy._proof_5
|
Mathlib.Algebra.Homology.ShortComplex.LeftHomology
|
β {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C]
{S : CategoryTheory.ShortComplex C} (h : S.LeftHomologyData) {K' : C} (eK : K' β
h.K),
CategoryTheory.CategoryStruct.comp 0 eK.inv =
CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id S.Xβ) 0
|
Lean.Grind.CommRing.Poly.insert.go.induct_unfolding
|
Init.Grind.Ring.CommSolver
|
β (k : β€) (m : Lean.Grind.CommRing.Mon) (motive : Lean.Grind.CommRing.Poly β Lean.Grind.CommRing.Poly β Prop),
(β (k_1 : β€),
motive (Lean.Grind.CommRing.Poly.num k_1) (Lean.Grind.CommRing.Poly.add k m (Lean.Grind.CommRing.Poly.num k_1))) β
(β (k_1 : β€) (m_1 : Lean.Grind.CommRing.Mon) (p : Lean.Grind.CommRing.Poly),
m.grevlex m_1 = Ordering.eq β
have k := k + k_1;
(k == 0) = true β motive (Lean.Grind.CommRing.Poly.add k_1 m_1 p) p) β
(β (k_1 : β€) (m_1 : Lean.Grind.CommRing.Mon) (p : Lean.Grind.CommRing.Poly),
m.grevlex m_1 = Ordering.eq β
have k := k + k_1;
(k == 0) = false β motive (Lean.Grind.CommRing.Poly.add k_1 m_1 p) (Lean.Grind.CommRing.Poly.add k m p)) β
(β (k_1 : β€) (m_1 : Lean.Grind.CommRing.Mon) (p : Lean.Grind.CommRing.Poly),
m.grevlex m_1 = Ordering.gt β
motive (Lean.Grind.CommRing.Poly.add k_1 m_1 p)
(Lean.Grind.CommRing.Poly.add k m (Lean.Grind.CommRing.Poly.add k_1 m_1 p))) β
(β (k_1 : β€) (m_1 : Lean.Grind.CommRing.Mon) (p : Lean.Grind.CommRing.Poly),
m.grevlex m_1 = Ordering.lt β
motive p (Lean.Grind.CommRing.Poly.insert.go k m p) β
motive (Lean.Grind.CommRing.Poly.add k_1 m_1 p)
(Lean.Grind.CommRing.Poly.add k_1 m_1 (Lean.Grind.CommRing.Poly.insert.go k m p))) β
β (a : Lean.Grind.CommRing.Poly), motive a (Lean.Grind.CommRing.Poly.insert.go k m a)
|
_private.Mathlib.LinearAlgebra.LinearPMap.0.LinearPMap.graph_map_fst_eq_domain._simp_1_6
|
Mathlib.LinearAlgebra.LinearPMap
|
β {Ξ± : Sort u_1} {p : Ξ± β Prop} {b : Prop}, (β x, p x β§ b) = ((β x, p x) β§ b)
|
MeasureTheory.exp_neg_llr
|
Mathlib.MeasureTheory.Measure.LogLikelihoodRatio
|
β {Ξ± : Type u_1} {mΞ± : MeasurableSpace Ξ±} {ΞΌ Ξ½ : MeasureTheory.Measure Ξ±} [MeasureTheory.SigmaFinite ΞΌ]
[MeasureTheory.SigmaFinite Ξ½],
ΞΌ.AbsolutelyContinuous Ξ½ β (fun x => Real.exp (-MeasureTheory.llr ΞΌ Ξ½ x)) =α΅[ΞΌ] fun x => (Ξ½.rnDeriv ΞΌ x).toReal
|
ContDiff.fourierPowSMulRight
|
Mathlib.Analysis.Fourier.FourierTransformDeriv
|
β {E : Type u_1} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace β E] {V : Type u_2} {W : Type u_3}
[inst_2 : NormedAddCommGroup V] [inst_3 : NormedSpace β V] [inst_4 : NormedAddCommGroup W] [inst_5 : NormedSpace β W]
(L : V βL[β] W βL[β] β) {f : V β E} {k : WithTop ββ},
ContDiff β k f β β (n : β), ContDiff β k fun v => VectorFourier.fourierPowSMulRight L f v n
|
TopModuleCat
|
Mathlib.Algebra.Category.ModuleCat.Topology.Basic
|
(R : Type u) β [Ring R] β [TopologicalSpace R] β Type (max u (v + 1))
|
Lean.Lsp.Ipc.CallHierarchy.rec_2
|
Lean.Data.Lsp.Ipc
|
{motive_1 : Lean.Lsp.Ipc.CallHierarchy β Sort u} β
{motive_2 : Array Lean.Lsp.Ipc.CallHierarchy β Sort u} β
{motive_3 : List Lean.Lsp.Ipc.CallHierarchy β Sort u} β
((item : Lean.Lsp.CallHierarchyItem) β
(fromRanges : Array Lean.Lsp.Range) β
(children : Array Lean.Lsp.Ipc.CallHierarchy) β
motive_2 children β motive_1 { item := item, fromRanges := fromRanges, children := children }) β
((toList : List Lean.Lsp.Ipc.CallHierarchy) β motive_3 toList β motive_2 { toList := toList }) β
motive_3 [] β
((head : Lean.Lsp.Ipc.CallHierarchy) β
(tail : List Lean.Lsp.Ipc.CallHierarchy) β motive_1 head β motive_3 tail β motive_3 (head :: tail)) β
(t : List Lean.Lsp.Ipc.CallHierarchy) β motive_3 t
|
CategoryTheory.SmallObject.hasPushouts
|
Mathlib.CategoryTheory.SmallObject.IsCardinalForSmallObjectArgument
|
β {C : Type u} [inst : CategoryTheory.Category.{v, u} C] (I : CategoryTheory.MorphismProperty C) (ΞΊ : Cardinal.{w})
[inst_1 : Fact ΞΊ.IsRegular] [inst_2 : OrderBot ΞΊ.ord.ToType] [I.IsCardinalForSmallObjectArgument ΞΊ],
CategoryTheory.Limits.HasPushouts C
|
AddSubgroup.op.instNormal
|
Mathlib.Algebra.Group.Subgroup.MulOppositeLemmas
|
β {G : Type u_2} [inst : AddGroup G] {H : AddSubgroup G} [H.Normal], H.op.Normal
|
LinearMap.BilinForm.apply_apply_same_eq_zero_iff
|
Mathlib.LinearAlgebra.SesquilinearForm.Basic
|
β {R : Type u_1} {M : Type u_5} [inst : CommRing R] [inst_1 : LinearOrder R] [IsStrictOrderedRing R]
[inst_3 : AddCommGroup M] [inst_4 : Module R M] (B : LinearMap.BilinForm R M),
(β (x : M), 0 β€ (B x) x) β LinearMap.IsSymm B β β {x : M}, (B x) x = 0 β x β LinearMap.ker B
|
AnalyticAt.comp_of_eq'
|
Mathlib.Analysis.Analytic.Composition
|
β {π : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [inst : NontriviallyNormedField π]
[inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π E] [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π F]
[inst_5 : NormedAddCommGroup G] [inst_6 : NormedSpace π G] {g : F β G} {f : E β F} {y : F} {x : E},
AnalyticAt π g y β AnalyticAt π f x β f x = y β AnalyticAt π (fun z => g (f z)) x
|
Equiv.piCongr'.eq_1
|
Mathlib.Logic.Equiv.Basic
|
β {Ξ± : Sort u_1} {Ξ² : Sort u_4} {W : Ξ± β Sort w} {Z : Ξ² β Sort z} (hβ : Ξ± β Ξ²) (hβ : (b : Ξ²) β W (hβ.symm b) β Z b),
hβ.piCongr' hβ = (hβ.symm.piCongr fun b => (hβ b).symm).symm
|
Fin.cast_addNat
|
Init.Data.Fin.Lemmas
|
β {n : β} (m : β) (i : Fin n), Fin.cast β― (i.addNat m) = Fin.natAdd m i
|
unitary.val_toUnits_apply
|
Mathlib.Algebra.Star.Unitary
|
β {R : Type u_1} [inst : Monoid R] [inst_1 : StarMul R] (x : β₯(unitary R)), β(Unitary.toUnits x) = βx
|
_private.Mathlib.Topology.Metrizable.Uniformity.0.UniformSpace.metrizable_uniformity._simp_1_5
|
Mathlib.Topology.Metrizable.Uniformity
|
β {Ξ± : Sort u_1} (a : Ξ±), (a = a) = True
|
List.nodup_iff_forall_not_duplicate
|
Mathlib.Data.List.Duplicate
|
β {Ξ± : Type u_1} {l : List Ξ±}, l.Nodup β β (x : Ξ±), Β¬List.Duplicate x l
|
LiouvilleWith.sub_nat_iff._simp_1
|
Mathlib.NumberTheory.Transcendental.Liouville.LiouvilleWith
|
β {p x : β} {n : β}, LiouvilleWith p (x - βn) = LiouvilleWith p x
|
CategoryTheory.ObjectProperty.productTo
|
Mathlib.CategoryTheory.Generator.Basic
|
{C : Type uβ} β
[inst : CategoryTheory.Category.{vβ, uβ} C] β
(P : CategoryTheory.ObjectProperty C) β
(X : C) β [inst_1 : CategoryTheory.Limits.HasProduct (P.productToFamily X)] β X βΆ βαΆ P.productToFamily X
|
Nat.ppred
|
Mathlib.Data.Nat.PSub
|
β β Option β
|
Matrix.instNonUnitalRing._proof_1
|
Mathlib.Data.Matrix.Mul
|
β {n : Type u_1} {Ξ± : Type u_2} [inst : NonUnitalRing Ξ±] (a b : Matrix n n Ξ±), a - b = a + -b
|
instCartesianClosedLightCondSet._proof_1
|
Mathlib.Condensed.Light.CartesianClosed
|
CategoryTheory.EssentiallySmall.{u_1, u_1, u_1 + 1} LightProfiniteα΅α΅
|
Tree.noConfusionType
|
Mathlib.Data.Tree.Basic
|
{Ξ± : Type u} β Sort u_1 β Tree Ξ± β Tree Ξ± β Sort u_1
|
LinearEquiv._sizeOf_inst
|
Mathlib.Algebra.Module.Equiv.Defs
|
{R : Type u_14} β
{S : Type u_15} β
{inst : Semiring R} β
{inst_1 : Semiring S} β
(Ο : R β+* S) β
{Ο' : S β+* R} β
{inst_2 : RingHomInvPair Ο Ο'} β
{inst_3 : RingHomInvPair Ο' Ο} β
(M : Type u_16) β
(Mβ : Type u_17) β
{inst_4 : AddCommMonoid M} β
{inst_5 : AddCommMonoid Mβ} β
{inst_6 : Module R M} β
{inst_7 : Module S Mβ} β
[SizeOf R] β [SizeOf S] β [SizeOf M] β [SizeOf Mβ] β SizeOf (M βββ[Ο] Mβ)
|
Cycle.length_nil
|
Mathlib.Data.List.Cycle
|
β {Ξ± : Type u_1}, Cycle.nil.length = 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.