name
string
module
string
type
string
IsAdicComplete.toIsPrecomplete
Mathlib.RingTheory.AdicCompletion.Basic
βˆ€ {R : Type u_1} {inst : CommRing R} {I : Ideal R} {M : Type u_4} {inst_1 : AddCommGroup M} {inst_2 : Module R M} [self : IsAdicComplete I M], IsPrecomplete I M
CategoryTheory.RegularMono._sizeOf_1
Mathlib.CategoryTheory.Limits.Shapes.RegularMono
{C : Type u₁} β†’ {inst : CategoryTheory.Category.{v₁, u₁} C} β†’ {X Y : C} β†’ {f : X ⟢ Y} β†’ [SizeOf C] β†’ CategoryTheory.RegularMono f β†’ β„•
FirstOrder.Language.PartialEquiv.mk.inj
Mathlib.ModelTheory.PartialEquiv
βˆ€ {L : FirstOrder.Language} {M : Type w} {N : Type w'} {inst : L.Structure M} {inst_1 : L.Structure N} {dom : L.Substructure M} {cod : L.Substructure N} {toEquiv : L.Equiv β†₯dom β†₯cod} {dom_1 : L.Substructure M} {cod_1 : L.Substructure N} {toEquiv_1 : L.Equiv β†₯dom_1 β†₯cod_1}, { dom := dom, cod := cod, toEquiv := toEquiv } = { dom := dom_1, cod := cod_1, toEquiv := toEquiv_1 } β†’ dom = dom_1 ∧ cod = cod_1 ∧ toEquiv ≍ toEquiv_1
Condensed.locallyConstantIsoFinYoneda
Mathlib.Condensed.Discrete.Colimit
(F : CategoryTheory.Functor Profiniteα΅’α΅– (Type (u + 1))) β†’ FintypeCat.toProfinite.op.comp (Condensed.locallyConstantPresheaf (F.obj (FintypeCat.toProfinite.op.obj (Opposite.op { carrier := PUnit.{u + 1}, str := PUnit.fintype })))) β‰… Condensed.finYoneda F
CategoryTheory.Limits.Concrete.initial_of_empty_of_reflects
Mathlib.CategoryTheory.Limits.Shapes.ConcreteCategory
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {FC : C β†’ C β†’ Type u_1} {CC : C β†’ Type w} [inst_1 : (X Y : C) β†’ FunLike (FC X Y) (CC X) (CC Y)] [inst_2 : CategoryTheory.ConcreteCategory C FC] [CategoryTheory.Limits.ReflectsColimit (CategoryTheory.Functor.empty C) (CategoryTheory.forget C)] (X : C), IsEmpty (CategoryTheory.ToType X) β†’ Nonempty (CategoryTheory.Limits.IsInitial X)
_private.Mathlib.Combinatorics.SimpleGraph.Matching.0.SimpleGraph.IsCycles.other_adj_of_adj._simp_1_1
Mathlib.Combinatorics.SimpleGraph.Matching
βˆ€ {V : Type u} (G : SimpleGraph V) (v w : V), G.Adj v w = (w ∈ G.neighborSet v)
AddCommGroup.toDistribLattice.eq_1
Mathlib.Algebra.Order.Group.Lattice
βˆ€ (Ξ± : Type u_2) [inst : Lattice Ξ±] [inst_1 : AddCommGroup Ξ±] [inst_2 : AddLeftMono Ξ±], AddCommGroup.toDistribLattice Ξ± = { toLattice := inst, le_sup_inf := β‹― }
Aesop.instInhabitedMVarClusterData.default
Aesop.Tree.Data
{a a_1 : Type} β†’ Aesop.MVarClusterData a a_1
Lean.Elab.Term.SyntheticMVarKind.typeClass.inj
Lean.Elab.Term.TermElabM
βˆ€ {extraErrorMsg? extraErrorMsg?_1 : Option Lean.MessageData}, Lean.Elab.Term.SyntheticMVarKind.typeClass extraErrorMsg? = Lean.Elab.Term.SyntheticMVarKind.typeClass extraErrorMsg?_1 β†’ extraErrorMsg? = extraErrorMsg?_1
Lean.PrefixTreeNode.below_2
Lean.Data.PrefixTree
{Ξ± : Type u} β†’ {Ξ² : Type v} β†’ {cmp : Ξ± β†’ Ξ± β†’ Ordering} β†’ {motive_1 : Lean.PrefixTreeNode Ξ± Ξ² cmp β†’ Sort u_1} β†’ {motive_2 : Std.TreeMap.Raw Ξ± (Lean.PrefixTreeNode Ξ± Ξ² cmp) cmp β†’ Sort u_1} β†’ {motive_3 : Std.DTreeMap.Raw Ξ± (fun x => Lean.PrefixTreeNode Ξ± Ξ² cmp) cmp β†’ Sort u_1} β†’ {motive_4 : (Std.DTreeMap.Internal.Impl Ξ± fun x => Lean.PrefixTreeNode Ξ± Ξ² cmp) β†’ Sort u_1} β†’ Std.DTreeMap.Raw Ξ± (fun x => Lean.PrefixTreeNode Ξ± Ξ² cmp) cmp β†’ Sort (max (max (u + 1) ((max u v) + 1)) u_1)
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.Equiv.entryAtIdx_eq._simp_1_2
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {instOrd : Ord Ξ±} {a b : Ξ±}, (compare a b β‰  Ordering.eq) = ((a == b) = false)
Mathlib.Notation3.MatchState.noConfusion
Mathlib.Util.Notation3
{P : Sort u} β†’ {x1 x2 : Mathlib.Notation3.MatchState} β†’ x1 = x2 β†’ Mathlib.Notation3.MatchState.noConfusionType P x1 x2
_private.Mathlib.Algebra.Polynomial.Degree.Units.0.Polynomial.isUnit_iff.match_1_1
Mathlib.Algebra.Polynomial.Degree.Units
βˆ€ {R : Type u_1} [inst : Semiring R] {p : Polynomial R} (motive : (βˆƒ r, IsUnit r ∧ Polynomial.C r = p) β†’ Prop) (x : βˆƒ r, IsUnit r ∧ Polynomial.C r = p), (βˆ€ (w : R) (hr : IsUnit w) (hrp : Polynomial.C w = p), motive β‹―) β†’ motive x
_private.Mathlib.Tactic.Linter.FindDeprecations.0.Mathlib.Tactic.DeprecationInfo.mk.noConfusion
Mathlib.Tactic.Linter.FindDeprecations
(P : Sort u) β†’ (module decl : Lean.Name) β†’ (rgStart rgStop : Lean.Position) β†’ (since : String) β†’ (module' decl' : Lean.Name) β†’ (rgStart' rgStop' : Lean.Position) β†’ (since' : String) β†’ { module := module, decl := decl, rgStart := rgStart, rgStop := rgStop, since := since } = { module := module', decl := decl', rgStart := rgStart', rgStop := rgStop', since := since' } β†’ (module = module' β†’ decl = decl' β†’ rgStart = rgStart' β†’ rgStop = rgStop' β†’ since = since' β†’ P) β†’ P
CategoryTheory.Functor.IsRepresentedBy.representableBy
Mathlib.CategoryTheory.RepresentedBy
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {F : CategoryTheory.Functor Cα΅’α΅– (Type w)} β†’ {X : C} β†’ {x : F.obj (Opposite.op X)} β†’ F.IsRepresentedBy x β†’ F.RepresentableBy X
integrable_cexp_quadratic'
Mathlib.Analysis.SpecialFunctions.Gaussian.FourierTransform
βˆ€ {b : β„‚}, b.re < 0 β†’ βˆ€ (c d : β„‚), MeasureTheory.Integrable (fun x => Complex.exp (b * ↑x ^ 2 + c * ↑x + d)) MeasureTheory.volume
Lean.Doc.Inline.emph.injEq
Lean.DocString.Types
βˆ€ {i : Type u} (content content_1 : Array (Lean.Doc.Inline i)), (Lean.Doc.Inline.emph content = Lean.Doc.Inline.emph content_1) = (content = content_1)
CategoryTheory.Functor.toPrefunctor
Mathlib.CategoryTheory.Functor.Basic
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ {D : Type uβ‚‚} β†’ [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] β†’ CategoryTheory.Functor C D β†’ C β₯€q D
Lean.Meta.saveState
Lean.Meta.Basic
Lean.MetaM Lean.Meta.SavedState
AffineSubspace.map_bot
Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Basic
βˆ€ {k : Type u_1} {V₁ : Type u_2} {P₁ : Type u_3} {Vβ‚‚ : Type u_4} {Pβ‚‚ : Type u_5} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : Module k V₁] [inst_3 : AddTorsor V₁ P₁] [inst_4 : AddCommGroup Vβ‚‚] [inst_5 : Module k Vβ‚‚] [inst_6 : AddTorsor Vβ‚‚ Pβ‚‚] (f : P₁ →ᡃ[k] Pβ‚‚), AffineSubspace.map f βŠ₯ = βŠ₯
Lean.Constructor.mk.injEq
Lean.Declaration
βˆ€ (name : Lean.Name) (type : Lean.Expr) (name_1 : Lean.Name) (type_1 : Lean.Expr), ({ name := name, type := type } = { name := name_1, type := type_1 }) = (name = name_1 ∧ type = type_1)
Filter.eventually_bind._simp_1
Mathlib.Order.Filter.Map
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Filter Ξ±} {m : Ξ± β†’ Filter Ξ²} {p : Ξ² β†’ Prop}, (βˆ€αΆ  (y : Ξ²) in f.bind m, p y) = βˆ€αΆ  (x : Ξ±) in f, βˆ€αΆ  (y : Ξ²) in m x, p y
Irrational.of_mul_ratCast
Mathlib.NumberTheory.Real.Irrational
βˆ€ (q : β„š) {x : ℝ}, Irrational (x * ↑q) β†’ Irrational x
Set.Finite.cast_ncard_eq
Mathlib.Data.Set.Card
βˆ€ {Ξ± : Type u_1} {s : Set Ξ±}, s.Finite β†’ ↑s.ncard = s.encard
LinearMap.transvection.comp_of_left_eq
Mathlib.LinearAlgebra.Transvection
βˆ€ {R : Type u_1} {V : Type u_2} [inst : CommSemiring R] [inst_1 : AddCommMonoid V] [inst_2 : Module R V] {f : Module.Dual R V} {v w : V}, f w = 0 β†’ LinearMap.transvection f v βˆ˜β‚— LinearMap.transvection f w = LinearMap.transvection f (v + w)
ENNReal.mul_eq_left
Mathlib.Data.ENNReal.Operations
βˆ€ {a b : ENNReal}, a β‰  0 β†’ a β‰  ⊀ β†’ (a * b = a ↔ b = 1)
Equiv.piOptionEquivProd_apply
Mathlib.Logic.Equiv.Basic
βˆ€ {Ξ± : Type u_10} {Ξ² : Option Ξ± β†’ Type u_9} (f : (a : Option Ξ±) β†’ Ξ² a), Equiv.piOptionEquivProd f = (f none, fun a => f (some a))
MeasureTheory.ae_eq_comp
Mathlib.MeasureTheory.Measure.Restrict
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} {Ξ΄ : Type u_4} {m0 : MeasurableSpace Ξ±} [inst : MeasurableSpace Ξ²] {ΞΌ : MeasureTheory.Measure Ξ±} {f : Ξ± β†’ Ξ²} {g g' : Ξ² β†’ Ξ΄}, AEMeasurable f ΞΌ β†’ g =ᡐ[MeasureTheory.Measure.map f ΞΌ] g' β†’ g ∘ f =ᡐ[ΞΌ] g' ∘ f
ByteArray.ofFn
Batteries.Data.ByteArray
{n : β„•} β†’ (Fin n β†’ UInt8) β†’ ByteArray
TestFunction.toBoundedContinuousFunctionCLM._proof_17
Mathlib.Analysis.Distribution.TestFunction
βˆ€ (π•œ : Type u_3) [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace ℝ E] {Ξ© : TopologicalSpace.Opens E} {F : Type u_1} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace ℝ F] [inst_5 : NormedSpace π•œ F] {n : β„•βˆž} [inst_6 : Algebra ℝ π•œ] [inst_7 : IsScalarTower ℝ π•œ F] (x : π•œ) (x_1 : TestFunction Ξ© F n), βˆƒ C, βˆ€ (x_2 y : E), dist ((x β€’ x_1) x_2) ((x β€’ x_1) y) ≀ C
_private.Mathlib.NumberTheory.Cyclotomic.Basic.0.IsCyclotomicExtension.eq_self_sdiff_zero._simp_1_1
Mathlib.NumberTheory.Cyclotomic.Basic
βˆ€ {a b c : Prop}, ((a ∧ b) ∧ c) = (a ∧ b ∧ c)
IsCyclotomicExtension.Rat.Three.lambda_pow_four_dvd_cube_add_one_of_dvd_add_one
Mathlib.NumberTheory.NumberField.Cyclotomic.Three
βˆ€ {K : Type u_1} [inst : Field K] {ΞΆ : K} (hΞΆ : IsPrimitiveRoot ΞΆ 3) [inst_1 : NumberField K] [IsCyclotomicExtension {3} β„š K] {x : NumberField.RingOfIntegers K}, hΞΆ.toInteger - 1 ∣ x + 1 β†’ (hΞΆ.toInteger - 1) ^ 4 ∣ x ^ 3 + 1
IsManifold.recOn
Mathlib.Geometry.Manifold.IsManifold.Basic
{π•œ : Type u_1} β†’ [inst : NontriviallyNormedField π•œ] β†’ {E : Type u_2} β†’ [inst_1 : NormedAddCommGroup E] β†’ [inst_2 : NormedSpace π•œ E] β†’ {H : Type u_3} β†’ [inst_3 : TopologicalSpace H] β†’ {I : ModelWithCorners π•œ E H} β†’ {n : WithTop β„•βˆž} β†’ {M : Type u_4} β†’ [inst_4 : TopologicalSpace M] β†’ [inst_5 : ChartedSpace H M] β†’ {motive : IsManifold I n M β†’ Sort u} β†’ (t : IsManifold I n M) β†’ ([toHasGroupoid : HasGroupoid M (contDiffGroupoid n I)] β†’ motive β‹―) β†’ motive t
_auto._@.Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.NonUnital.3472188799._hygCtx._hyg.82
Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.NonUnital
Lean.Syntax
_private.Init.Data.BitVec.Lemmas.0.BitVec.extractLsb'_append_extractLsb'_eq_extractLsb'._simp_1_1
Init.Data.BitVec.Lemmas
βˆ€ {Ξ± : Sort u_1} {p : Prop} [inst : Decidable p] {x y : Ξ±}, ((if p then x else y) = x) = (Β¬p β†’ y = x)
_private.Lean.Elab.MutualInductive.0.Lean.Elab.Command.AddAndFinalizeContext.indFVars
Lean.Elab.MutualInductive
Lean.Elab.Command.AddAndFinalizeContext✝ β†’ Array Lean.Expr
TopModuleCat.instAddCommGroupHom
Mathlib.Algebra.Category.ModuleCat.Topology.Basic
(R : Type u) β†’ [inst : Ring R] β†’ [inst_1 : TopologicalSpace R] β†’ {X Y : TopModuleCat R} β†’ AddCommGroup (X ⟢ Y)
Finset.subset_mulSpan._simp_3
Mathlib.Combinatorics.Additive.Dissociation
βˆ€ {Ξ± : Type u_1} [inst : CommGroup Ξ±] [inst_1 : DecidableEq Ξ±] [inst_2 : Fintype Ξ±] {s : Finset Ξ±}, (s βŠ† s.mulSpan) = True
_private.Std.Data.Iterators.Lemmas.Producers.Monadic.Array.0.Std.Iterators.ArrayIterator.stepAsHetT_iterFromIdxM._simp_1_3
Std.Data.Iterators.Lemmas.Producers.Monadic.Array
βˆ€ {Ξ± : Type u_1} [inst : LE Ξ±] {x y : Ξ±}, (x β‰₯ y) = (y ≀ x)
Filter.covariant_vadd
Mathlib.Order.Filter.Pointwise
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : VAdd Ξ± Ξ²], CovariantClass (Filter Ξ±) (Filter Ξ²) (fun x1 x2 => x1 +α΅₯ x2) fun x1 x2 => x1 ≀ x2
Std.DTreeMap.Internal.Impl.minKey?_le_minKey?_erase
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {instOrd : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} [inst : Std.TransOrd Ξ±] (h : t.WF) {k km kme : Ξ±} (hkme : (Std.DTreeMap.Internal.Impl.erase k t β‹―).impl.minKey? = some kme), t.minKey?.get β‹― = km β†’ (compare km kme).isLE = true
grade_strictMono
Mathlib.Order.Grade
βˆ€ {𝕆 : Type u_1} {Ξ± : Type u_3} [inst : Preorder 𝕆] [inst_1 : Preorder Ξ±] [inst_2 : GradeOrder 𝕆 Ξ±], StrictMono (grade 𝕆)
Vector.eraseIdx_set_lt
Init.Data.Vector.Erase
βˆ€ {Ξ± : Type u_1} {n : β„•} {xs : Vector Ξ± n} {i : β„•} {w : i < n} {j : β„•} {a : Ξ±} (h : j < i), (xs.set i a w).eraseIdx j β‹― = (xs.eraseIdx j β‹―).set (i - 1) a β‹―
Action.FunctorCategoryEquivalence.functor_map_app
Mathlib.CategoryTheory.Action.Basic
βˆ€ {V : Type u_1} [inst : CategoryTheory.Category.{u_3, u_1} V] {G : Type u_2} [inst_1 : Monoid G] {X Y : Action V G} (f : X ⟢ Y) (x : CategoryTheory.SingleObj G), (Action.FunctorCategoryEquivalence.functor.map f).app x = f.hom
FirstOrder.Language.age
Mathlib.ModelTheory.Fraisse
(L : FirstOrder.Language) β†’ (M : Type w) β†’ [L.Structure M] β†’ Set (CategoryTheory.Bundled L.Structure)
ContinuousMap.zero_comp
Mathlib.Topology.ContinuousMap.Algebra
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} [inst : TopologicalSpace Ξ±] [inst_1 : TopologicalSpace Ξ²] [inst_2 : TopologicalSpace Ξ³] [inst_3 : Zero Ξ³] (g : C(Ξ±, Ξ²)), ContinuousMap.comp 0 g = 0
Std.Do.PredTrans.pure._proof_1
Std.Do.PredTrans
βˆ€ {ps : Std.Do.PostShape} {Ξ± : Type u_1} (a : Ξ±) (Q₁ Qβ‚‚ : Std.Do.PostCond Ξ± ps), Q₁.1 a ∧ Qβ‚‚.1 a βŠ£βŠ’β‚› Q₁.1 a ∧ Qβ‚‚.1 a
Positive.instPowSubtypeLtOfNatNat_mathlib._proof_1
Mathlib.Algebra.Order.Positive.Ring
βˆ€ {R : Type u_1} [inst : Semiring R] [inst_1 : PartialOrder R] [IsStrictOrderedRing R] (x : { x // 0 < x }) (n : β„•), 0 < ↑x ^ n
_private.Mathlib.Tactic.MkIffOfInductiveProp.0.Mathlib.Tactic.MkIff.select.match_5
Mathlib.Tactic.MkIffOfInductiveProp
(motive : β„• β†’ β„• β†’ Sort u_1) β†’ (m n : β„•) β†’ (Unit β†’ motive 0 0) β†’ ((n : β„•) β†’ motive 0 n.succ) β†’ ((m n : β„•) β†’ motive m.succ n.succ) β†’ ((x x_1 : β„•) β†’ motive x x_1) β†’ motive m n
NNRat.nndist_eq._simp_1
Mathlib.Topology.Instances.Rat
βˆ€ (p q : β„šβ‰₯0), nndist ↑p ↑q = nndist p q
List.Sublist.tail
Init.Data.List.Sublist
βˆ€ {Ξ± : Type u_1} {l₁ lβ‚‚ : List Ξ±}, l₁.Sublist lβ‚‚ β†’ l₁.tail.Sublist lβ‚‚.tail
Β«term_<|_Β»
Init.Notation
Lean.TrailingParserDescr
CategoryTheory.Under.map.eq_1
Mathlib.CategoryTheory.Comma.Over.Basic
βˆ€ {T : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} T] {X Y : T} (f : X ⟢ Y), CategoryTheory.Under.map f = CategoryTheory.Comma.mapLeft (CategoryTheory.Functor.id T) (CategoryTheory.Discrete.natTrans fun x => f)
Lean.Compiler.LCNF.Simp.FunDeclInfoMap.format
Lean.Compiler.LCNF.Simp.FunDeclInfo
Lean.Compiler.LCNF.Simp.FunDeclInfoMap β†’ Lean.Compiler.LCNF.CompilerM Std.Format
smul_nonneg_iff_neg_imp_nonpos
Mathlib.Algebra.Order.Module.Defs
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : Ring Ξ±] [inst_1 : LinearOrder Ξ±] [IsStrictOrderedRing Ξ±] [inst_3 : AddCommGroup Ξ²] [inst_4 : LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [inst_6 : Module Ξ± Ξ²] [PosSMulStrictMono Ξ± Ξ²] {a : Ξ±} {b : Ξ²}, 0 ≀ a β€’ b ↔ (a < 0 β†’ b ≀ 0) ∧ (b < 0 β†’ a ≀ 0)
AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right'
Mathlib.Geometry.RingedSpace.OpenImmersion
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y Z : AlgebraicGeometry.SheafedSpace C} (f : X ⟢ Z) (g : Y ⟢ Z) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f], CategoryTheory.Limits.HasLimit (CategoryTheory.Limits.cospan (((CategoryTheory.Limits.cospan g f).comp AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace).map CategoryTheory.Limits.WalkingCospan.Hom.inl) (((CategoryTheory.Limits.cospan g f).comp AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace).map CategoryTheory.Limits.WalkingCospan.Hom.inr))
if_true_right._simp_1
Init.PropLemmas
βˆ€ {p q : Prop} [h : Decidable p], (if p then q else True) = (p β†’ q)
ENat.forall_natCast_le_iff_le
Mathlib.Data.ENat.Basic
βˆ€ {m n : β„•βˆž}, (βˆ€ (a : β„•), ↑a ≀ m β†’ ↑a ≀ n) ↔ m ≀ n
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence._proof_1
Mathlib.CategoryTheory.Idempotents.KaroubiKaroubi
βˆ€ (C : Type u_1) [inst : CategoryTheory.Category.{u_2, u_1} C] (X : CategoryTheory.Idempotents.Karoubi C), CategoryTheory.CategoryStruct.comp ((CategoryTheory.Idempotents.toKaroubi (CategoryTheory.Idempotents.Karoubi C)).map ((CategoryTheory.Idempotents.KaroubiKaroubi.unitIso C).hom.app X)) ((CategoryTheory.Idempotents.KaroubiKaroubi.counitIso C).hom.app ((CategoryTheory.Idempotents.toKaroubi (CategoryTheory.Idempotents.Karoubi C)).obj X)) = CategoryTheory.CategoryStruct.id ((CategoryTheory.Idempotents.toKaroubi (CategoryTheory.Idempotents.Karoubi C)).obj X)
Std.Tactic.BVDecide.instDecidableEqBVUnOp.decEq._proof_33
Std.Tactic.BVDecide.Bitblast.BVExpr.Basic
βˆ€ (n : β„•), Std.Tactic.BVDecide.BVUnOp.clz = Std.Tactic.BVDecide.BVUnOp.rotateRight n β†’ False
Std.Iterators.Iter.step_drop
Std.Data.Iterators.Lemmas.Combinators.Drop
βˆ€ {Ξ± Ξ² : Type u_1} [inst : Std.Iterators.Iterator Ξ± Id Ξ²] {n : β„•} {it : Std.Iter Ξ²}, (Std.Iterators.Iter.drop n it).step = match it.step with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => match n with | 0 => Std.Iterators.PlausibleIterStep.yield (Std.Iterators.Iter.drop 0 it') out β‹― | k.succ => Std.Iterators.PlausibleIterStep.skip (Std.Iterators.Iter.drop k it') β‹― | ⟨Std.Iterators.IterStep.skip it', h⟩ => Std.Iterators.PlausibleIterStep.skip (Std.Iterators.Iter.drop n it') β‹― | ⟨Std.Iterators.IterStep.done, h⟩ => Std.Iterators.PlausibleIterStep.done β‹―
Plausible.Testable.mk
Plausible.Testable
{p : Prop} β†’ (Plausible.Configuration β†’ Bool β†’ Plausible.Gen (Plausible.TestResult p)) β†’ Plausible.Testable p
Complex.arg_of_im_pos
Mathlib.Analysis.SpecialFunctions.Complex.Arg
βˆ€ {z : β„‚}, 0 < z.im β†’ z.arg = Real.arccos (z.re / β€–zβ€–)
Nat.dfold_zero._proof_7
Init.Data.Nat.Fold
0 ≀ 0
Finpartition.instMin._simp_5
Mathlib.Order.Partition.Finpartition
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {s : Finset Ξ±} {t : Finset Ξ²} {p : Ξ± Γ— Ξ²}, (p ∈ s Γ—Λ’ t) = (p.1 ∈ s ∧ p.2 ∈ t)
Ideal.comap_map_mk
Mathlib.RingTheory.Ideal.Quotient.Operations
βˆ€ {R : Type u} [inst : Ring R] {I J : Ideal R} [inst_1 : I.IsTwoSided], I ≀ J β†’ Ideal.comap (Ideal.Quotient.mk I) (Ideal.map (Ideal.Quotient.mk I) J) = J
prodXSubSMul.eval
Mathlib.Algebra.Polynomial.GroupRingAction
βˆ€ (G : Type u_2) [inst : Group G] [inst_1 : Fintype G] (R : Type u_3) [inst_2 : CommRing R] [inst_3 : MulSemiringAction G R] (x : R), Polynomial.eval x (prodXSubSMul G R x) = 0
QuotientGroup.instSeminormedCommGroup._proof_4
Mathlib.Analysis.Normed.Group.Quotient
βˆ€ {M : Type u_1} [inst : SeminormedCommGroup M] (S : Subgroup M) (x y : M β§Έ S), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
_private.Mathlib.Combinatorics.Matroid.Sum.0.Matroid.sum'_isBasis_iff._simp_1_2
Mathlib.Combinatorics.Matroid.Sum
βˆ€ {Ξ± : Type u_3} {Ξ² : Type u_4} {M : Matroid Ξ±} (f : Ξ± ≃ Ξ²) {I X : Set Ξ²}, (M.mapEquiv f).IsBasis I X = M.IsBasis (⇑f.symm '' I) (⇑f.symm '' X)
Set.InjOn.eq_iff
Mathlib.Data.Set.Function
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {s : Set Ξ±} {f : Ξ± β†’ Ξ²} {x y : Ξ±}, Set.InjOn f s β†’ x ∈ s β†’ y ∈ s β†’ (f x = f y ↔ x = y)
CategoryTheory.Limits.image.fac
Mathlib.CategoryTheory.Limits.Shapes.Images
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y : C} (f : X ⟢ Y) [inst_1 : CategoryTheory.Limits.HasImage f], CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.factorThruImage f) (CategoryTheory.Limits.image.ΞΉ f) = f
DomAddAct.instAddCommMonoidOfAddOpposite
Mathlib.GroupTheory.GroupAction.DomAct.Basic
{M : Type u_1} β†’ [AddCommMonoid Mᡃᡒᡖ] β†’ AddCommMonoid Mα΅ˆα΅ƒα΅ƒ
Dioph._aux_Mathlib_NumberTheory_Dioph___unexpand_Dioph_le_dioph_1
Mathlib.NumberTheory.Dioph
Lean.PrettyPrinter.Unexpander
Metric.PiNatEmbed.recOn
Mathlib.Topology.MetricSpace.PiNat
{ΞΉ : Type u_2} β†’ {X : Type u_5} β†’ {Y : ΞΉ β†’ Type u_6} β†’ {f : (i : ΞΉ) β†’ X β†’ Y i} β†’ {motive : Metric.PiNatEmbed X Y f β†’ Sort u} β†’ (t : Metric.PiNatEmbed X Y f) β†’ ((ofPiNat : X) β†’ motive { ofPiNat := ofPiNat }) β†’ motive t
jacobiSym.mul_right'
Mathlib.NumberTheory.LegendreSymbol.JacobiSymbol
βˆ€ (a : β„€) {b₁ bβ‚‚ : β„•}, b₁ β‰  0 β†’ bβ‚‚ β‰  0 β†’ jacobiSym a (b₁ * bβ‚‚) = jacobiSym a b₁ * jacobiSym a bβ‚‚
TopCommRingCat.hasForgetToTopCat
Mathlib.Topology.Category.TopCommRingCat
CategoryTheory.HasForgetβ‚‚ TopCommRingCat TopCat
Equiv.Perm.coe_pow._simp_1
Mathlib.Algebra.Group.End
βˆ€ {Ξ± : Type u_4} (f : Equiv.Perm Ξ±) (n : β„•), (⇑f)^[n] = ⇑(f ^ n)
_private.Lean.Meta.Tactic.Simp.Types.0.Lean.Meta.Simp.SimpM.run.match_1
Lean.Meta.Tactic.Simp.Types
{Ξ± : Type} β†’ (motive : Ξ± Γ— Lean.Meta.Simp.State β†’ Sort u_1) β†’ (__discr : Ξ± Γ— Lean.Meta.Simp.State) β†’ ((r : Ξ±) β†’ (s : Lean.Meta.Simp.State) β†’ motive (r, s)) β†’ motive __discr
CategoryTheory.ShiftMkCore.casesOn
Mathlib.CategoryTheory.Shift.Basic
{C : Type u} β†’ {A : Type u_1} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ [inst_1 : AddMonoid A] β†’ {motive : CategoryTheory.ShiftMkCore C A β†’ Sort u_2} β†’ (t : CategoryTheory.ShiftMkCore C A) β†’ ((F : A β†’ CategoryTheory.Functor C C) β†’ (zero : F 0 β‰… CategoryTheory.Functor.id C) β†’ (add : (n m : A) β†’ F (n + m) β‰… (F n).comp (F m)) β†’ (assoc_hom_app : βˆ€ (m₁ mβ‚‚ m₃ : A) (X : C), CategoryTheory.CategoryStruct.comp ((add (m₁ + mβ‚‚) m₃).hom.app X) ((F m₃).map ((add m₁ mβ‚‚).hom.app X)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom β‹―) (CategoryTheory.CategoryStruct.comp ((add m₁ (mβ‚‚ + m₃)).hom.app X) ((add mβ‚‚ m₃).hom.app ((F m₁).obj X)))) β†’ (zero_add_hom_app : βˆ€ (n : A) (X : C), (add 0 n).hom.app X = CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom β‹―) ((F n).map (zero.inv.app X))) β†’ (add_zero_hom_app : βˆ€ (n : A) (X : C), (add n 0).hom.app X = CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom β‹―) (zero.inv.app ((F n).obj X))) β†’ motive { F := F, zero := zero, add := add, assoc_hom_app := assoc_hom_app, zero_add_hom_app := zero_add_hom_app, add_zero_hom_app := add_zero_hom_app }) β†’ motive t
Batteries.Tactic.PrintPrefixConfig.imported._default
Batteries.Tactic.PrintPrefix
Bool
Qq.unpackParensIdent
Qq.Match
Lean.Syntax β†’ Option Lean.Syntax
_private.Mathlib.Combinatorics.SimpleGraph.Triangle.Counting.0.SimpleGraph.triangle_counting'._simp_1_4
Mathlib.Combinatorics.SimpleGraph.Triangle.Counting
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {p : Ξ± Γ— Ξ² β†’ Prop}, (βˆ€ (x : Ξ± Γ— Ξ²), p x) = βˆ€ (a : Ξ±) (b : Ξ²), p (a, b)
Homeomorph.funUnique_apply
Mathlib.Topology.Homeomorph.Lemmas
βˆ€ (ΞΉ : Type u_7) (X : Type u_8) [inst : Unique ΞΉ] [inst_1 : TopologicalSpace X], ⇑(Homeomorph.funUnique ΞΉ X) = fun f => f default
Finmap.lookup_eq_none
Mathlib.Data.Finmap
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} [inst : DecidableEq Ξ±] {a : Ξ±} {s : Finmap Ξ²}, Finmap.lookup a s = none ↔ a βˆ‰ s
Lean.Elab.Info.format
Lean.Elab.InfoTree.Main
Lean.Elab.ContextInfo β†’ Lean.Elab.Info β†’ IO Std.Format
Int64.toISize_xor
Init.Data.SInt.Bitwise
βˆ€ (a b : Int64), (a ^^^ b).toISize = a.toISize ^^^ b.toISize
CategoryTheory.Limits.coprod.inl_snd_assoc
Mathlib.CategoryTheory.Limits.Shapes.ZeroMorphisms
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] (X Y : C) [inst_2 : CategoryTheory.Limits.HasBinaryCoproduct X Y] {Z : C} (h : Y ⟢ Z), CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.coprod.inl (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.coprod.snd X Y) h) = CategoryTheory.CategoryStruct.comp 0 h
_private.Mathlib.FieldTheory.Galois.Infinite.0.InfiniteGalois.restrict_fixedField._simp_1_6
Mathlib.FieldTheory.Galois.Infinite
βˆ€ {Ξ± : Type u} (x : Ξ±) (a b : Set Ξ±), (x ∈ a ∩ b) = (x ∈ a ∧ x ∈ b)
Bool.not_eq_eq_eq_not
Init.SimpLemmas
βˆ€ {a b : Bool}, (!a) = b ↔ a = !b
MeasureTheory.OuterMeasure.map._proof_1
Mathlib.MeasureTheory.OuterMeasure.Operations
IsScalarTower ENNReal ENNReal ENNReal
MeasureTheory.Measure.restrict_apply_self
Mathlib.MeasureTheory.Measure.Restrict
βˆ€ {Ξ± : Type u_2} {m0 : MeasurableSpace Ξ±} (ΞΌ : MeasureTheory.Measure Ξ±) (s : Set Ξ±), (ΞΌ.restrict s) s = ΞΌ s
Array.filter_empty
Init.Data.Array.Lemmas
βˆ€ {Ξ± : Type u_1} {p : Ξ± β†’ Bool}, Array.filter p #[] = #[]
_private.Plausible.Gen.0.Plausible.Gen.permutationOf._proof_7
Plausible.Gen
βˆ€ {Ξ± : Type u_1} (ys : List Ξ±), Β¬0 ≀ ys.length β†’ False
_private.Mathlib.Analysis.Normed.Unbundled.SpectralNorm.0.spectralNorm.spectralMulAlgNorm_eq_of_mem_roots._simp_1_3
Mathlib.Analysis.Normed.Unbundled.SpectralNorm
βˆ€ {R : Type u} {a : R} [inst : Semiring R] {p : Polynomial R}, p.IsRoot a = (Polynomial.eval a p = 0)
HurwitzZeta.hasSum_int_oddKernel
Mathlib.NumberTheory.LSeries.HurwitzZetaOdd
βˆ€ (a : ℝ) {x : ℝ}, 0 < x β†’ HasSum (fun n => (↑n + a) * Real.exp (-Real.pi * (↑n + a) ^ 2 * x)) (HurwitzZeta.oddKernel (↑a) x)
_private.Lean.Meta.Tactic.Grind.Theorems.0.Lean.Meta.Grind.Theorems.eraseDecl.match_1
Lean.Meta.Tactic.Grind.Theorems
(motive : Option (Array Lean.Name) β†’ Sort u_1) β†’ (__do_lift : Option (Array Lean.Name)) β†’ ((eqns : Array Lean.Name) β†’ motive (some eqns)) β†’ ((x : Option (Array Lean.Name)) β†’ motive x) β†’ motive __do_lift
CategoryTheory.PreZeroHypercover.pullbackCoverOfLeftIsoPullback₁._proof_3
Mathlib.CategoryTheory.Sites.Hypercover.Zero
βˆ€ {C : Type u_3} [inst : CategoryTheory.Category.{u_2, u_3} C] {X : C} (E : CategoryTheory.PreZeroHypercover X) {Y Z : C} (f : X ⟢ Z) (g : Y ⟢ Z) [inst_1 : CategoryTheory.Limits.HasPullback f g] [inst_2 : βˆ€ (i : E.Iβ‚€), CategoryTheory.Limits.HasPullback (CategoryTheory.Limits.pullback.fst f g) (E.f i)] [inst_3 : βˆ€ (i : E.Iβ‚€), CategoryTheory.Limits.HasPullback (E.f i) (CategoryTheory.Limits.pullback.fst f g)] (i : (E.pullbackCoverOfLeft f g).Iβ‚€), CategoryTheory.CategoryStruct.comp ((CategoryTheory.Limits.pullbackRightPullbackFstIso f g (E.f i)).symm β‰ͺ≫ CategoryTheory.Limits.pullbackSymmetry (E.f i) (CategoryTheory.Limits.pullback.fst f g)).hom ((CategoryTheory.PreZeroHypercover.pullback₁ (CategoryTheory.Limits.pullback.fst f g) E).f ((Equiv.refl (E.pullbackCoverOfLeft f g).Iβ‚€) i)) = (E.pullbackCoverOfLeft f g).f i
Algebra.Extension.noConfusion
Mathlib.RingTheory.Extension.Basic
{R : Type u} β†’ {S : Type v} β†’ [inst : CommRing R] β†’ [inst_1 : CommRing S] β†’ [inst_2 : Algebra R S] β†’ {P : Sort u_1} β†’ {x1 x2 : Algebra.Extension R S} β†’ x1 = x2 β†’ Algebra.Extension.noConfusionType P x1 x2
Lean.Omega.Fin.lt_of_not_le
Init.Omega.Int
βˆ€ {n : β„•} {i j : Fin n}, Β¬i ≀ j β†’ j < i
CategoryTheory.Limits.coproductIsCoproduct'._proof_2
Mathlib.CategoryTheory.Limits.Shapes.Products
βˆ€ {Ξ± : Type u_1} {C : Type u_3} [inst : CategoryTheory.Category.{u_2, u_3} C] (X : CategoryTheory.Functor (CategoryTheory.Discrete Ξ±) C) [inst_1 : CategoryTheory.Limits.HasCoproduct fun j => X.obj { as := j }] (s : CategoryTheory.Limits.Cocone X) (m : (CategoryTheory.Limits.Sigma.cocone X).pt ⟢ s.pt), (βˆ€ (j : CategoryTheory.Discrete Ξ±), CategoryTheory.CategoryStruct.comp ((CategoryTheory.Limits.Sigma.cocone X).ΞΉ.app j) m = s.ΞΉ.app j) β†’ m = CategoryTheory.Limits.Sigma.desc fun j => s.ΞΉ.app { as := j }