name
string
module
string
type
string
Int.le_iff_lt_or_eq
Init.Data.Int.Order
βˆ€ {a b : β„€}, a ≀ b ↔ a < b ∨ a = b
CategoryTheory.Idempotents.instIsIdempotentCompleteCosimplicialObject
Mathlib.CategoryTheory.Idempotents.SimplicialObject
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.IsIdempotentComplete C], CategoryTheory.IsIdempotentComplete (CategoryTheory.CosimplicialObject C)
LieHom._sizeOf_1
Mathlib.Algebra.Lie.Basic
{R : Type u_1} β†’ {L : Type u_2} β†’ {L' : Type u_3} β†’ {inst : CommRing R} β†’ {inst_1 : LieRing L} β†’ {inst_2 : LieAlgebra R L} β†’ {inst_3 : LieRing L'} β†’ {inst_4 : LieAlgebra R L'} β†’ [SizeOf R] β†’ [SizeOf L] β†’ [SizeOf L'] β†’ (L →ₗ⁅R⁆ L') β†’ β„•
Vector.zipWith_replicate
Init.Data.Vector.Zip
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ±_1 : Type u_3} {f : Ξ± β†’ Ξ² β†’ Ξ±_1} {a : Ξ±} {b : Ξ²} {n : β„•}, Vector.zipWith f (Vector.replicate n a) (Vector.replicate n b) = Vector.replicate n (f a b)
IsSelfAdjoint.conjugate'
Mathlib.Algebra.Star.SelfAdjoint
βˆ€ {R : Type u_1} [inst : Semigroup R] [inst_1 : StarMul R] {x : R}, IsSelfAdjoint x β†’ βˆ€ (z : R), IsSelfAdjoint (star z * x * z)
Int.reduceNe._regBuiltin.Int.reduceNe.declare_1._@.Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int.625502844._hygCtx._hyg.22
Lean.Meta.Tactic.Simp.BuiltinSimprocs.Int
IO Unit
_private.Lean.Meta.Tactic.Grind.MBTC.0.Lean.Meta.Grind.Key.noConfusionType
Lean.Meta.Tactic.Grind.MBTC
Sort u β†’ Lean.Meta.Grind.Key✝ β†’ Lean.Meta.Grind.Key✝ β†’ Sort u
_private.Mathlib.RingTheory.Unramified.Locus.0.Algebra.unramifiedLocus_eq_compl_support._simp_1_2
Mathlib.RingTheory.Unramified.Locus
βˆ€ {R : Type u_1} {M : Type u_2} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] {p : PrimeSpectrum R}, (p βˆ‰ Module.support R M) = Subsingleton (LocalizedModule p.asIdeal.primeCompl M)
ZNum.decidableLT
Mathlib.Data.Num.Basic
DecidableLT ZNum
CompHausLike.LocallyConstant.sigmaComparison_comp_sigmaIso
Mathlib.Condensed.Discrete.LocallyConstant
βˆ€ {P : TopCat β†’ Prop} [inst : βˆ€ (S : CompHausLike P) (p : ↑S.toTop β†’ Prop), CompHausLike.HasProp P (Subtype p)] {Q : CompHausLike P} {Z : Type (max u w)} (r : LocallyConstant (↑Q.toTop) Z) (a : Function.Fiber ⇑r) [inst_1 : CompHausLike.HasExplicitFiniteCoproducts P] (X : CategoryTheory.Functor (CompHausLike P)α΅’α΅– (Type (max u w))), CategoryTheory.CategoryStruct.comp (X.mapIso (CompHausLike.LocallyConstant.sigmaIso r).op).hom (CategoryTheory.CategoryStruct.comp (CompHausLike.sigmaComparison X fun a => ↑(CompHausLike.LocallyConstant.fiber r a).toTop) fun g => g a) = X.map (CompHausLike.LocallyConstant.sigmaIncl r a).op
_private.Lean.Meta.Tactic.Grind.Arith.CommRing.SemiringM.0.Lean.Meta.Grind.Arith.CommRing.setTermSemiringId.match_1
Lean.Meta.Tactic.Grind.Arith.CommRing.SemiringM
(motive : Option β„• β†’ Sort u_1) β†’ (__do_lift : Option β„•) β†’ ((semiringId' : β„•) β†’ motive (some semiringId')) β†’ ((x : Option β„•) β†’ motive x) β†’ motive __do_lift
Array.range'_append_1
Init.Data.Array.Range
βˆ€ {s m n : β„•}, Array.range' s m ++ Array.range' (s + m) n = Array.range' s (m + n)
Finset.prod_prod_Ioi_mul_eq_prod_prod_off_diag
Mathlib.Algebra.Order.BigOperators.Group.LocallyFinite
βˆ€ {Ξ± : Type u_1} {M : Type u_2} [inst : CommMonoid M] [inst_1 : LinearOrder Ξ±] [inst_2 : Fintype Ξ±] [inst_3 : LocallyFiniteOrderTop Ξ±] [LocallyFiniteOrderBot Ξ±] (f : Ξ± β†’ Ξ± β†’ M), ∏ i, ∏ j ∈ Finset.Ioi i, f j i * f i j = ∏ i, ∏ j ∈ {i}ᢜ, f j i
NonUnitalNonAssocRing.toHasDistribNeg._proof_3
Mathlib.Algebra.Ring.Defs
βˆ€ {Ξ± : Type u_1} [inst : NonUnitalNonAssocRing Ξ±] (a b : Ξ±), a * -b = -(a * b)
FundamentalGroupoid.instSubsingletonHomPUnit
Mathlib.AlgebraicTopology.FundamentalGroupoid.PUnit
βˆ€ {x y : FundamentalGroupoid PUnit.{u_1 + 1}}, Subsingleton (x ⟢ y)
_private.Mathlib.Analysis.SpecificLimits.Normed.0.Monotone.tendsto_le_alternating_series._simp_1_2
Mathlib.Analysis.SpecificLimits.Normed
βˆ€ {Ξ± : Type u} [inst : AddGroup Ξ±] [inst_1 : LE Ξ±] [AddRightMono Ξ±] {a b c : Ξ±}, (a - c ≀ b) = (a ≀ b + c)
Submonoid.LocalizationMap.mulEquivOfMulEquiv
Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} β†’ [inst : CommMonoid M] β†’ {S : Submonoid M} β†’ {N : Type u_2} β†’ [inst_1 : CommMonoid N] β†’ {P : Type u_3} β†’ [inst_2 : CommMonoid P] β†’ S.LocalizationMap N β†’ {T : Submonoid P} β†’ {Q : Type u_4} β†’ [inst_3 : CommMonoid Q] β†’ T.LocalizationMap Q β†’ {j : M ≃* P} β†’ Submonoid.map j.toMonoidHom S = T β†’ N ≃* Q
_private.Mathlib.Dynamics.TopologicalEntropy.NetEntropy.0.Dynamics.coverMincard_le_netMaxcard._simp_1_5
Mathlib.Dynamics.TopologicalEntropy.NetEntropy
βˆ€ {a b : Prop}, (Β¬(a ∧ b)) = (a β†’ Β¬b)
Submodule.finiteDimensional_iSup
Mathlib.LinearAlgebra.FiniteDimensional.Basic
βˆ€ {K : Type u} {V : Type v} [inst : DivisionRing K] [inst_1 : AddCommGroup V] [inst_2 : Module K V] {ΞΉ : Sort u_1} [Finite ΞΉ] (S : ΞΉ β†’ Submodule K V) [βˆ€ (i : ΞΉ), FiniteDimensional K β†₯(S i)], FiniteDimensional K β†₯(⨆ i, S i)
LieSubmodule.ext
Mathlib.Algebra.Lie.Submodule
βˆ€ {R : Type u} {L : Type v} {M : Type w} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : AddCommGroup M] [inst_3 : Module R M] [inst_4 : LieRingModule L M] (N N' : LieSubmodule R L M), (βˆ€ (m : M), m ∈ N ↔ m ∈ N') β†’ N = N'
SetTheory.PGame.sub_self_equiv
Mathlib.SetTheory.PGame.Algebra
βˆ€ (x : SetTheory.PGame), x - x β‰ˆ 0
_private.Init.Data.BitVec.Lemmas.0.BitVec.clzAuxRec_le._proof_1_1
Init.Data.BitVec.Lemmas
Β¬1 < 2 β†’ False
Lean.StructureDescr.fields
Lean.Structure
Lean.StructureDescr β†’ Array Lean.StructureFieldInfo
FirstOrder.Language.DirectLimit.inductionOn
Mathlib.ModelTheory.DirectLimit
βˆ€ {L : FirstOrder.Language} {ΞΉ : Type v} [inst : Preorder ΞΉ] {G : ΞΉ β†’ Type w} [inst_1 : (i : ΞΉ) β†’ L.Structure (G i)] {f : (i j : ΞΉ) β†’ i ≀ j β†’ L.Embedding (G i) (G j)} [inst_2 : IsDirectedOrder ΞΉ] [inst_3 : DirectedSystem G fun i j h => ⇑(f i j h)] [inst_4 : Nonempty ΞΉ] {C : FirstOrder.Language.DirectLimit G f β†’ Prop} (z : FirstOrder.Language.DirectLimit G f), (βˆ€ (i : ΞΉ) (x : G i), C ((FirstOrder.Language.DirectLimit.of L ΞΉ G f i) x)) β†’ C z
mul_mem_ball_iff_norm
Mathlib.Analysis.Normed.Group.Basic
βˆ€ {E : Type u_5} [inst : SeminormedCommGroup E] {a b : E} {r : ℝ}, a * b ∈ Metric.ball a r ↔ β€–bβ€– < r
_private.Batteries.Data.String.Lemmas.0.String.Legacy.instDecidableEqIterator.decEq.match_1.splitter
Batteries.Data.String.Lemmas
(motive : String.Legacy.Iterator β†’ String.Legacy.Iterator β†’ Sort u_1) β†’ (x x_1 : String.Legacy.Iterator) β†’ ((a : String) β†’ (a_1 : String.Pos.Raw) β†’ (b : String) β†’ (b_1 : String.Pos.Raw) β†’ motive { s := a, i := a_1 } { s := b, i := b_1 }) β†’ motive x x_1
CategoryTheory.Limits.Types.TypeMax.colimitCocone
Mathlib.CategoryTheory.Limits.Types.Colimits
{J : Type v} β†’ [inst : CategoryTheory.Category.{w, v} J] β†’ (F : CategoryTheory.Functor J (Type (max v u))) β†’ CategoryTheory.Limits.Cocone F
disjoint_of_subsingleton._simp_1
Mathlib.Order.Disjoint
βˆ€ {Ξ± : Type u_1} [inst : PartialOrder Ξ±] [inst_1 : OrderBot Ξ±] {a b : Ξ±} [Subsingleton Ξ±], Disjoint a b = True
SetTheory.PGame.Relabelling.isEmpty
Mathlib.SetTheory.PGame.Basic
(x : SetTheory.PGame) β†’ [IsEmpty x.LeftMoves] β†’ [IsEmpty x.RightMoves] β†’ x.Relabelling 0
_private.Std.Data.Iterators.Lemmas.Equivalence.HetT.0.Std.Iterators.HetT.pmap_map._simp_1_1
Std.Data.Iterators.Lemmas.Equivalence.HetT
βˆ€ {m : Type w β†’ Type w'} [inst : Monad m] [LawfulMonad m] {Ξ± : Type v} {x y : Std.Iterators.HetT m Ξ±}, (x = y) = βˆƒ (h : x.Property = y.Property), βˆ€ (Ξ² : Type w) (f : (a : Ξ±) β†’ x.Property a β†’ m Ξ²), x.prun f = y.prun fun a ha => f a β‹―
_private.Lean.Elab.Tactic.Grind.ShowState.0.Lean.Elab.Tactic.Grind.evalShowLocalThms._regBuiltin._private.Lean.Elab.Tactic.Grind.ShowState.0.Lean.Elab.Tactic.Grind.evalShowLocalThms_1
Lean.Elab.Tactic.Grind.ShowState
IO Unit
CategoryTheory.Localization.inverts
Mathlib.CategoryTheory.Localization.Predicate
βˆ€ {C : Type u_1} {D : Type u_2} [inst : CategoryTheory.Category.{u_4, u_1} C] [inst_1 : CategoryTheory.Category.{u_5, u_2} D] (L : CategoryTheory.Functor C D) (W : CategoryTheory.MorphismProperty C) [L.IsLocalization W], W.IsInvertedBy L
Set.iUnionβ‚‚_inter
Mathlib.Data.Set.Lattice
βˆ€ {Ξ± : Type u_1} {ΞΉ : Sort u_5} {ΞΊ : ΞΉ β†’ Sort u_8} (s : (i : ΞΉ) β†’ ΞΊ i β†’ Set Ξ±) (t : Set Ξ±), (⋃ i, ⋃ j, s i j) ∩ t = ⋃ i, ⋃ j, s i j ∩ t
_private.Mathlib.Order.WithBot.0.WithBot.noMaxOrder.match_1
Mathlib.Order.WithBot
βˆ€ {Ξ± : Type u_1} [inst : LT Ξ±] (a : Ξ±) (motive : (βˆƒ b, a < b) β†’ Prop) (x : βˆƒ b, a < b), (βˆ€ (b : Ξ±) (hba : a < b), motive β‹―) β†’ motive x
CategoryTheory.Functor.OplaxRightLinear.noConfusion
Mathlib.CategoryTheory.Monoidal.Action.LinearFunctor
{D : Type u_1} β†’ {D' : Type u_2} β†’ [inst : CategoryTheory.Category.{u_4, u_1} D] β†’ [inst_1 : CategoryTheory.Category.{u_5, u_2} D'] β†’ {F : CategoryTheory.Functor D D'} β†’ {C : Type u_3} β†’ [inst_2 : CategoryTheory.Category.{u_6, u_3} C] β†’ [inst_3 : CategoryTheory.MonoidalCategory C] β†’ [inst_4 : CategoryTheory.MonoidalCategory.MonoidalRightAction C D] β†’ [inst_5 : CategoryTheory.MonoidalCategory.MonoidalRightAction C D'] β†’ {P : Sort u} β†’ {x1 x2 : F.OplaxRightLinear C} β†’ x1 = x2 β†’ CategoryTheory.Functor.OplaxRightLinear.noConfusionType P x1 x2
TopologicalSpace.instWellFoundedLTClosedsOfNoetherianSpace
Mathlib.Topology.NoetherianSpace
βˆ€ {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] [TopologicalSpace.NoetherianSpace Ξ±], WellFoundedLT (TopologicalSpace.Closeds Ξ±)
Finset.erase_val
Mathlib.Data.Finset.Erase
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] (s : Finset Ξ±) (a : Ξ±), (s.erase a).val = s.val.erase a
BddDistLat.Iso.mk._proof_3
Mathlib.Order.Category.BddDistLat
βˆ€ {Ξ± Ξ² : BddDistLat} (e : ↑α.toDistLat ≃o ↑β.toDistLat) (a b : ↑α.1), { toFun := ⇑e, map_sup' := β‹―, map_inf' := β‹― }.toFun (a βŠ” b) = { toFun := ⇑e, map_sup' := β‹―, map_inf' := β‹― }.toFun a βŠ” { toFun := ⇑e, map_sup' := β‹―, map_inf' := β‹― }.toFun b
SimpleGraph.Walk.ofBoxProdLeft._proof_2
Mathlib.Combinatorics.SimpleGraph.Prod
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {H : SimpleGraph Ξ²} {x : Ξ± Γ— Ξ²} (v : Ξ± Γ— Ξ²), H.Adj x.2 v.2 ∧ x.1 = v.1 β†’ v.1 = x.1
List.isEqv.eq_2
Init.Data.List.Lemmas
βˆ€ {Ξ± : Type u} (x : Ξ± β†’ Ξ± β†’ Bool) (a : Ξ±) (as : List Ξ±) (b : Ξ±) (bs : List Ξ±), (a :: as).isEqv (b :: bs) x = (x a b && as.isEqv bs x)
_private.Lean.Meta.Tactic.Grind.MBTC.0.Lean.Meta.Grind.instHashableKey.hash.match_1
Lean.Meta.Tactic.Grind.MBTC
(motive : Lean.Meta.Grind.Key✝ β†’ Sort u_1) β†’ (x : Lean.Meta.Grind.Key✝¹) β†’ ((a : Lean.Expr) β†’ motive { mask := a }) β†’ motive x
AffineBasis.instInhabitedPUnit._proof_1
Mathlib.LinearAlgebra.AffineSpace.Basis
βˆ€ {k : Type u_1} [inst : Ring k], AffineIndependent k id
CategoryTheory.Abelian.im
Mathlib.CategoryTheory.Abelian.Basic
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ [CategoryTheory.Abelian C] β†’ CategoryTheory.Functor (CategoryTheory.Arrow C) C
MonoidHom.exists_nhds_isBounded
Mathlib.MeasureTheory.Measure.Haar.NormedSpace
βˆ€ {G : Type u_1} {H : Type u_2} [inst : MeasurableSpace G] [inst_1 : Group G] [inst_2 : TopologicalSpace G] [IsTopologicalGroup G] [BorelSpace G] [LocallyCompactSpace G] [inst_6 : MeasurableSpace H] [inst_7 : SeminormedGroup H] [OpensMeasurableSpace H] (f : G β†’* H), Measurable ⇑f β†’ βˆ€ (x : G), βˆƒ s ∈ nhds x, Bornology.IsBounded (⇑f '' s)
QuotientGroup.equivQuotientZPowOfEquiv_symm
Mathlib.GroupTheory.QuotientGroup.Basic
βˆ€ {A B : Type u} [inst : CommGroup A] [inst_1 : CommGroup B] (e : A ≃* B) (n : β„€), (QuotientGroup.equivQuotientZPowOfEquiv e n).symm = QuotientGroup.equivQuotientZPowOfEquiv e.symm n
Lean.Lsp.RpcConnected.casesOn
Lean.Data.Lsp.Extra
{motive : Lean.Lsp.RpcConnected β†’ Sort u} β†’ (t : Lean.Lsp.RpcConnected) β†’ ((sessionId : UInt64) β†’ motive { sessionId := sessionId }) β†’ motive t
Measure.eq_prod_of_integral_prod_mul_boundedContinuousFunction
Mathlib.MeasureTheory.Measure.HasOuterApproxClosedProd
βˆ€ {ΞΉ : Type u_1} {T : Type u_4} [inst : Fintype ΞΉ] {X : ΞΉ β†’ Type u_5} {mX : (i : ΞΉ) β†’ MeasurableSpace (X i)} [inst_1 : (i : ΞΉ) β†’ TopologicalSpace (X i)] [βˆ€ (i : ΞΉ), BorelSpace (X i)] [βˆ€ (i : ΞΉ), HasOuterApproxClosed (X i)] {mT : MeasurableSpace T} [inst_4 : TopologicalSpace T] [BorelSpace T] [HasOuterApproxClosed T] {ΞΌ : MeasureTheory.Measure ((i : ΞΉ) β†’ X i)} {Ξ½ : MeasureTheory.Measure T} {ΞΎ : MeasureTheory.Measure (((i : ΞΉ) β†’ X i) Γ— T)} [MeasureTheory.IsFiniteMeasure ΞΌ] [MeasureTheory.IsFiniteMeasure Ξ½] [MeasureTheory.IsFiniteMeasure ΞΎ], (βˆ€ (f : (i : ΞΉ) β†’ BoundedContinuousFunction (X i) ℝ) (g : BoundedContinuousFunction T ℝ), ∫ (p : ((i : ΞΉ) β†’ X i) Γ— T), (∏ i, (f i) (p.1 i)) * g p.2 βˆ‚ΞΎ = (∫ (x : (i : ΞΉ) β†’ X i), ∏ i, (f i) (x i) βˆ‚ΞΌ) * ∫ (t : T), g t βˆ‚Ξ½) β†’ ΞΎ = ΞΌ.prod Ξ½
IsApproximateSubgroup.subgroup
Mathlib.Combinatorics.Additive.ApproximateSubgroup
βˆ€ {G : Type u_1} [inst : Group G] {S : Type u_2} [inst_1 : SetLike S G] [SubgroupClass S G] {H : S}, IsApproximateSubgroup 1 ↑H
symmetrizeRel_subset_self
Mathlib.Topology.UniformSpace.Defs
βˆ€ {Ξ± : Type ua} (V : SetRel Ξ± Ξ±), symmetrizeRel V βŠ† V
Sylow.mulEquivIteratedWreathProduct._proof_3
Mathlib.GroupTheory.RegularWreathProduct
βˆ€ (p n : β„•) (Ξ± : Type u_2) [inst : Finite Ξ±] (hΞ± : Nat.card Ξ± = p ^ n) (G : Type u_1) [inst_1 : Group G] [inst_2 : Finite G] (hG : Nat.card G = p), Function.Injective (⇑((Finite.equivFinOfCardEq hΞ±).trans (Finite.equivFinOfCardEq β‹―).symm).symm.permCongrHom.toEquiv ∘ ⇑(iteratedWreathToPermHom G n))
LocallyFiniteOrder.toLocallyFiniteOrderBot._proof_2
Mathlib.Order.Interval.Finset.Defs
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] [inst_1 : OrderBot Ξ±] [inst_2 : LocallyFiniteOrder Ξ±] (a x : Ξ±), x ∈ Finset.Ico βŠ₯ a ↔ x < a
_private.Mathlib.RingTheory.MvPolynomial.WeightedHomogeneous.0.MvPolynomial.weightedTotalDegree'_eq_bot_iff._simp_1_4
Mathlib.RingTheory.MvPolynomial.WeightedHomogeneous
βˆ€ {Ξ± : Type u_1} {a : Ξ±}, (↑a = βŠ₯) = False
instAddRightCancelMonoidOrderDual
Mathlib.Algebra.Order.Group.Synonym
{Ξ± : Type u_1} β†’ [h : AddRightCancelMonoid Ξ±] β†’ AddRightCancelMonoid Ξ±α΅’α΅ˆ
PadicInt.norm_intCast_lt_one_iff
Mathlib.NumberTheory.Padics.PadicIntegers
βˆ€ {p : β„•} [hp : Fact (Nat.Prime p)] {z : β„€}, ‖↑zβ€– < 1 ↔ ↑p ∣ z
_private.Lean.Widget.UserWidget.0.Lean.Widget.builtinModulesRef
Lean.Widget.UserWidget
IO.Ref (Std.TreeMap UInt64 (Lean.Name Γ— Lean.Widget.Module) compare)
LieSubalgebra.span_univ
Mathlib.Algebra.Lie.Subalgebra
βˆ€ (R : Type u) (L : Type v) [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : LieAlgebra R L], LieSubalgebra.lieSpan R L Set.univ = ⊀
CategoryTheory.Lax.OplaxTrans.mk.sizeOf_spec
Mathlib.CategoryTheory.Bicategory.NaturalTransformation.Lax
βˆ€ {B : Type u₁} [inst : CategoryTheory.Bicategory B] {C : Type uβ‚‚} [inst_1 : CategoryTheory.Bicategory C] {F G : CategoryTheory.LaxFunctor B C} [inst_2 : SizeOf B] [inst_3 : SizeOf C] (app : (a : B) β†’ F.obj a ⟢ G.obj a) (naturality : {a b : B} β†’ (f : a ⟢ b) β†’ CategoryTheory.CategoryStruct.comp (F.map f) (app b) ⟢ CategoryTheory.CategoryStruct.comp (app a) (G.map f)) (naturality_naturality : autoParam (βˆ€ {a b : B} {f g : a ⟢ b} (Ξ· : f ⟢ g), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapβ‚‚ Ξ·) (app b)) (naturality g) = CategoryTheory.CategoryStruct.comp (naturality f) (CategoryTheory.Bicategory.whiskerLeft (app a) (G.mapβ‚‚ Ξ·))) CategoryTheory.Lax.OplaxTrans.naturality_naturality._autoParam) (naturality_id : autoParam (βˆ€ (a : B), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapId a) (app a)) (naturality (CategoryTheory.CategoryStruct.id a)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.leftUnitor (app a)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor (app a)).inv (CategoryTheory.Bicategory.whiskerLeft (app a) (G.mapId a)))) CategoryTheory.Lax.OplaxTrans.naturality_id._autoParam) (naturality_comp : autoParam (βˆ€ {a b c : B} (f : a ⟢ b) (g : b ⟢ c), CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (app c)) (naturality (CategoryTheory.CategoryStruct.comp f g)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (app c)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (naturality g)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (app b) (G.map g)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (naturality f) (G.map g)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (app a) (G.map f) (G.map g)).hom (CategoryTheory.Bicategory.whiskerLeft (app a) (G.mapComp f g))))))) CategoryTheory.Lax.OplaxTrans.naturality_comp._autoParam), sizeOf { app := app, naturality := naturality, naturality_naturality := naturality_naturality, naturality_id := naturality_id, naturality_comp := naturality_comp } = 1
Batteries.BinomialHeap.merge.match_1
Batteries.Data.BinomialHeap.Basic
{Ξ± : Type u_1} β†’ {le : Ξ± β†’ Ξ± β†’ Bool} β†’ (motive : Batteries.BinomialHeap Ξ± le β†’ Batteries.BinomialHeap Ξ± le β†’ Sort u_2) β†’ (x x_1 : Batteries.BinomialHeap Ξ± le) β†’ ((b₁ : Batteries.BinomialHeap.Imp.Heap Ξ±) β†’ (h₁ : Batteries.BinomialHeap.Imp.Heap.WF le 0 b₁) β†’ (bβ‚‚ : Batteries.BinomialHeap.Imp.Heap Ξ±) β†’ (hβ‚‚ : Batteries.BinomialHeap.Imp.Heap.WF le 0 bβ‚‚) β†’ motive ⟨b₁, hβ‚βŸ© ⟨bβ‚‚, hβ‚‚βŸ©) β†’ motive x x_1
Lean.Doc.instImpl._@.Lean.Elab.DocString.Builtin.Postponed.1250074310._hygCtx._hyg.32
Lean.Elab.DocString.Builtin.Postponed
TypeName Lean.Doc.PostponedCheck
List.min_replicate
Init.Data.List.MinMax
βˆ€ {Ξ± : Type u_1} [inst : Min Ξ±] [Std.MinEqOr Ξ±] {n : β„•} {a : Ξ±} (h : List.replicate n a β‰  []), (List.replicate n a).min h = a
_private.Aesop.Tree.Tracing.0.Aesop.Goal.traceMetadata.match_1
Aesop.Tree.Tracing
(motive : Option (Lean.MVarId Γ— Lean.Meta.SavedState) β†’ Sort u_1) β†’ (x : Option (Lean.MVarId Γ— Lean.Meta.SavedState)) β†’ (Unit β†’ motive none) β†’ ((goal : Lean.MVarId) β†’ (state : Lean.Meta.SavedState) β†’ motive (some (goal, state))) β†’ motive x
Valuation.IsEquiv.orderRingIso.congr_simp
Mathlib.Topology.Algebra.Valued.WithVal
βˆ€ {R : Type u_4} {Ξ“β‚€ : Type u_5} {Ξ“β‚€' : Type u_6} [inst : Ring R] [inst_1 : LinearOrderedCommGroupWithZero Ξ“β‚€] [inst_2 : LinearOrderedCommGroupWithZero Ξ“β‚€'] {v : Valuation R Ξ“β‚€} {w : Valuation R Ξ“β‚€'} (h : v.IsEquiv w), h.orderRingIso = h.orderRingIso
_private.Mathlib.Algebra.Group.TypeTags.Basic.0.isRegular_toMul._simp_1_2
Mathlib.Algebra.Group.TypeTags.Basic
βˆ€ {R : Type u_1} [inst : Mul R] {c : R}, IsRegular c = (IsLeftRegular c ∧ IsRightRegular c)
Nat.mul_pos_iff_of_pos_left
Init.Data.Nat.Lemmas
βˆ€ {a b : β„•}, 0 < a β†’ (0 < a * b ↔ 0 < b)
LinOrd.instConcreteCategoryOrderHomCarrier._proof_4
Mathlib.Order.Category.LinOrd
βˆ€ {X Y Z : LinOrd} (f : X ⟢ Y) (g : Y ⟢ Z) (x : ↑X), (CategoryTheory.CategoryStruct.comp f g).hom' x = g.hom' (f.hom' x)
HomologicalComplex.monoidalCategoryStruct._proof_4
Mathlib.Algebra.Homology.Monoidal
βˆ€ (C : Type u_2) [inst : CategoryTheory.Category.{u_3, u_2} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.Preadditive C] {I : Type u_1} [inst_3 : AddMonoid I] (c : ComplexShape I) [βˆ€ (X₁ Xβ‚‚ X₃ : CategoryTheory.GradedObject I C), X₁.HasGoodTensor₁₂Tensor Xβ‚‚ X₃] (K₁ Kβ‚‚ K₃ : HomologicalComplex C c), CategoryTheory.GradedObject.HasGoodTensor₁₂Tensor K₁.X Kβ‚‚.X K₃.X
OrderIso.symm_image_image
Mathlib.Order.Hom.Set
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : LE Ξ±] [inst_1 : LE Ξ²] (e : Ξ± ≃o Ξ²) (s : Set Ξ±), ⇑e.symm '' (⇑e '' s) = s
spinGroup.mul_star_self_of_mem
Mathlib.LinearAlgebra.CliffordAlgebra.SpinGroup
βˆ€ {R : Type u_1} [inst : CommRing R] {M : Type u_2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] {Q : QuadraticForm R M} {x : CliffordAlgebra Q}, x ∈ spinGroup Q β†’ x * star x = 1
_private.Mathlib.RingTheory.Ideal.Span.0.Ideal.span_pair_add_mul_left.match_1_1
Mathlib.RingTheory.Ideal.Span
βˆ€ {R : Type u_1} [inst : CommRing R] {x y : R} (z x_1 : R) (motive : (βˆƒ a b, a * (x + y * z) + b * y = x_1) β†’ Prop) (x_2 : βˆƒ a b, a * (x + y * z) + b * y = x_1), (βˆ€ (a b : R) (h : a * (x + y * z) + b * y = x_1), motive β‹―) β†’ motive x_2
Lean.Parser.sepByElemParser.formatter
Lean.Parser.Extra
Lean.PrettyPrinter.Formatter β†’ String β†’ Lean.PrettyPrinter.Formatter
Finset.coe_pow._simp_4
Mathlib.Algebra.Group.Pointwise.Finset.Basic
βˆ€ {Ξ± : Type u_2} [inst : DecidableEq Ξ±] [inst_1 : AddMonoid Ξ±] (s : Finset Ξ±) (n : β„•), n β€’ ↑s = ↑(n β€’ s)
Submodule.finite_iSup
Mathlib.RingTheory.Finiteness.Lattice
βˆ€ {R : Type u_2} {V : Type u_3} [inst : Ring R] [inst_1 : AddCommGroup V] [inst_2 : Module R V] {ΞΉ : Sort u_1} [Finite ΞΉ] (S : ΞΉ β†’ Submodule R V) [βˆ€ (i : ΞΉ), Module.Finite R β†₯(S i)], Module.Finite R β†₯(⨆ i, S i)
Lean.Meta.Grind.Arith.Cutsat.ToIntInfo.ofLE?
Lean.Meta.Tactic.Grind.Arith.Cutsat.ToIntInfo
Lean.Meta.Grind.Arith.Cutsat.ToIntInfo β†’ Option (Option Lean.Expr)
_private.Mathlib.RingTheory.Valuation.Extension.0.Valuation.HasExtension.ofComapInteger._simp_1_2
Mathlib.RingTheory.Valuation.Extension
βˆ€ {R : Type u} {S : Type v} [inst : Ring R] [inst_1 : Ring S] {s : Subring S} {f : R β†’+* S} {x : R}, (x ∈ Subring.comap f s) = (f x ∈ s)
_private.Init.Data.Int.Order.0.Int.instLawfulOrderLT._simp_2
Init.Data.Int.Order
βˆ€ {a b : Prop} [Decidable a], (a β†’ b) = (Β¬a ∨ b)
ContinuousMultilinearMap.zero_apply
Mathlib.Topology.Algebra.Module.Multilinear.Basic
βˆ€ {R : Type u} {ΞΉ : Type v} {M₁ : ΞΉ β†’ Type w₁} {Mβ‚‚ : Type wβ‚‚} [inst : Semiring R] [inst_1 : (i : ΞΉ) β†’ AddCommMonoid (M₁ i)] [inst_2 : AddCommMonoid Mβ‚‚] [inst_3 : (i : ΞΉ) β†’ Module R (M₁ i)] [inst_4 : Module R Mβ‚‚] [inst_5 : (i : ΞΉ) β†’ TopologicalSpace (M₁ i)] [inst_6 : TopologicalSpace Mβ‚‚] (m : (i : ΞΉ) β†’ M₁ i), 0 m = 0
Order.height_eq_krullDim_Iic
Mathlib.Order.KrullDimension
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] (x : Ξ±), ↑(Order.height x) = Order.krullDim ↑(Set.Iic x)
Lean.Elab.WF.GuessLex.RecCallCache.callerName
Lean.Elab.PreDefinition.WF.GuessLex
Lean.Elab.WF.GuessLex.RecCallCache β†’ Lean.Name
Batteries.RBNode.lowerBound?_eq_find?
Batteries.Data.RBMap.Lemmas
βˆ€ {Ξ± : Type u_1} {x : Ξ±} {t : Batteries.RBNode Ξ±} {cut : Ξ± β†’ Ordering} (lb : Option Ξ±), Batteries.RBNode.find? cut t = some x β†’ Batteries.RBNode.lowerBound? cut t lb = some x
_private.Mathlib.Order.KrullDimension.0.Order.height_le_of_krullDim_preimage_le._proof_1_4
Mathlib.Order.KrullDimension
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_1} [inst : Preorder Ξ±] [inst_1 : PartialOrder Ξ²] {m : β„•} (f : Ξ± β†’o Ξ²) (n : β„•), (βˆ€ m_1 < n, βˆ€ (x : Ξ±), Order.height (f x) = ↑m_1 β†’ Order.height x ≀ (↑m + 1) * ↑m_1 + ↑m) β†’ βˆ€ (x : Ξ±), Order.height (f x) = ↑n β†’ βˆ€ (p : LTSeries Ξ±), RelSeries.last p ≀ x β†’ (↑m + 1) * ↑n + ↑m < ↑p.length β†’ f x ≀ f (p.toFun ⟨p.length - (m + 1), β‹―βŸ©) β†’ p.length ≀ m + (p.length - (m + 1)) β†’ p.length > m β†’ False
Lean.Parser.Command.grindPattern._regBuiltin.Lean.Parser.Command.grindPattern.formatter_13
Lean.Meta.Tactic.Grind.Parser
IO Unit
Combinatorics.Subspace.reindex._simp_1
Mathlib.Combinatorics.HalesJewett
βˆ€ {Ξ± : Sort u_1} {Ξ² : Sort u_2} (e : Ξ± ≃ Ξ²) {x : Ξ²} {y : Ξ±}, (y = e.symm x) = (e y = x)
HomologicalComplex.HomologySequence.snakeInput._proof_37
Mathlib.Algebra.Homology.HomologySequence
βˆ€ {C : Type u_2} {ΞΉ : Type u_3} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Abelian C] {c : ComplexShape ΞΉ} {S : CategoryTheory.ShortComplex (HomologicalComplex C c)} (i j : ΞΉ), CategoryTheory.Epi ((HomologicalComplex.HomologySequence.composableArrows₃ S.Xβ‚‚ i j).map' 2 3 HomologicalComplex.HomologySequence.snakeInput._proof_33 HomologicalComplex.HomologySequence.snakeInput._proof_34)
CategoryTheory.DifferentialObject.mk._flat_ctor
Mathlib.CategoryTheory.DifferentialObject
{S : Type u_1} β†’ [inst : AddMonoidWithOne S] β†’ {C : Type u} β†’ [inst_1 : CategoryTheory.Category.{v, u} C] β†’ [inst_2 : CategoryTheory.Limits.HasZeroMorphisms C] β†’ [inst_3 : CategoryTheory.HasShift C S] β†’ (obj : C) β†’ (d : obj ⟢ (CategoryTheory.shiftFunctor C 1).obj obj) β†’ autoParam (CategoryTheory.CategoryStruct.comp d ((CategoryTheory.shiftFunctor C 1).map d) = 0) CategoryTheory.DifferentialObject.d_squared._autoParam β†’ CategoryTheory.DifferentialObject S C
PiTensorProduct.ofFinsuppEquiv'.eq_1
Mathlib.LinearAlgebra.PiTensorProduct.Finsupp
βˆ€ {R : Type u_1} {ΞΉ : Type u_2} {ΞΊ : ΞΉ β†’ Type u_3} [inst : CommSemiring R] [inst_1 : Fintype ΞΉ] [inst_2 : DecidableEq ΞΉ] [inst_3 : (i : ΞΉ) β†’ DecidableEq (ΞΊ i)] [inst_4 : DecidableEq R], PiTensorProduct.ofFinsuppEquiv' = PiTensorProduct.ofFinsuppEquiv.trans (Finsupp.lcongr (Equiv.refl ((i : ΞΉ) β†’ ΞΊ i)) (PiTensorProduct.constantBaseRingEquiv ΞΉ R).toLinearEquiv)
_private.Mathlib.CategoryTheory.Limits.Shapes.SequentialProduct.0.CategoryTheory.Limits.SequentialProduct.functorMap_commSq_aux._proof_1_9
Mathlib.CategoryTheory.Limits.Shapes.SequentialProduct
βˆ€ {C : Type u_1} {M N : β„• β†’ C} [inst : CategoryTheory.Category.{u_2, u_1} C] (f : (n : β„•) β†’ M n ⟢ N n) [inst_1 : CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Discrete β„•) C] {n k : β„•} ⦃m_1 : ℕ⦄ (h : n ≀ m_1), (βˆ€ (hh : m_1 ≀ k), CategoryTheory.CategoryStruct.comp ((CategoryTheory.Functor.ofOpSequence (CategoryTheory.Limits.SequentialProduct.functorMap f)).map (CategoryTheory.homOfLE h).op) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.limit.Ο€ (CategoryTheory.Discrete.functor fun m => if x : m < n then M m else N m) { as := k }) (CategoryTheory.eqToHom β‹―)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.limit.Ο€ (CategoryTheory.Discrete.functor fun i => if x : i < m_1 then M i else N i) { as := k }) (CategoryTheory.eqToHom β‹―)) β†’ m_1 + 1 ≀ k β†’ (if x : k < m_1 then M k else N k) = N k
Turing.TM0.Machine.map_respects
Mathlib.Computability.PostTuringMachine
βˆ€ {Ξ“ : Type u_1} [inst : Inhabited Ξ“] {Ξ“' : Type u_2} [inst_1 : Inhabited Ξ“'] {Ξ› : Type u_3} [inst_2 : Inhabited Ξ›] {Ξ›' : Type u_4} [inst_3 : Inhabited Ξ›'] (M : Turing.TM0.Machine Ξ“ Ξ›) (f₁ : Turing.PointedMap Ξ“ Ξ“') (fβ‚‚ : Turing.PointedMap Ξ“' Ξ“) (g₁ : Turing.PointedMap Ξ› Ξ›') (gβ‚‚ : Ξ›' β†’ Ξ›) {S : Set Ξ›}, Turing.TM0.Supports M S β†’ Function.RightInverse f₁.f fβ‚‚.f β†’ (βˆ€ q ∈ S, gβ‚‚ (g₁.f q) = q) β†’ Turing.Respects (Turing.TM0.step M) (Turing.TM0.step (M.map f₁ fβ‚‚ g₁.f gβ‚‚)) fun a b => a.q ∈ S ∧ Turing.TM0.Cfg.map f₁ g₁.f a = b
LaurentPolynomial.ext
Mathlib.Algebra.Polynomial.Laurent
βˆ€ {R : Type u_1} [inst : Semiring R] {p q : LaurentPolynomial R}, (βˆ€ (a : β„€), p a = q a) β†’ p = q
signedDist_triangle_left
Mathlib.Geometry.Euclidean.SignedDist
βˆ€ {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MetricSpace P] [inst_3 : NormedAddTorsor V P] (v : V) (p q r : P), ((signedDist v) p) q - ((signedDist v) p) r = ((signedDist v) r) q
CategoryTheory.Functor.PreservesLeftKanExtension
Mathlib.CategoryTheory.Functor.KanExtension.Preserves
{A : Type u_1} β†’ {B : Type u_2} β†’ {C : Type u_3} β†’ {D : Type u_4} β†’ [inst : CategoryTheory.Category.{u_5, u_1} A] β†’ [inst_1 : CategoryTheory.Category.{u_6, u_2} B] β†’ [inst_2 : CategoryTheory.Category.{u_7, u_3} C] β†’ [inst_3 : CategoryTheory.Category.{u_8, u_4} D] β†’ CategoryTheory.Functor B D β†’ CategoryTheory.Functor A B β†’ CategoryTheory.Functor A C β†’ Prop
ContinuousMap.exists_finite_sum_smul_approximation_of_mem_uniformity
Mathlib.Topology.UniformSpace.ProdApproximation
βˆ€ {X : Type u_1} {Y : Type u_2} {R : Type u_3} {V : Type u_4} [inst : TopologicalSpace X] [TotallyDisconnectedSpace X] [T2Space X] [CompactSpace X] [inst_4 : TopologicalSpace Y] [CompactSpace Y] [inst_6 : AddCommGroup V] [inst_7 : UniformSpace V] [IsUniformAddGroup V] {S : Set (V Γ— V)} [inst_9 : TopologicalSpace R] [inst_10 : MonoidWithZero R] [inst_11 : MulActionWithZero R V] (f : C(X Γ— Y, V)), S ∈ uniformity V β†’ βˆƒ n g h, βˆ€ (x : X) (y : Y), (f (x, y), βˆ‘ i, (g i) x β€’ (h i) y) ∈ S
Nat.gcd_dvd_gcd_mul_right_left
Init.Data.Nat.Gcd
βˆ€ (m n k : β„•), m.gcd n ∣ (m * k).gcd n
_private.Lean.Meta.Tactic.FunInd.0.Lean.Tactic.FunInd.buildInductionBody._unsafe_rec
Lean.Meta.Tactic.FunInd
Array Lean.FVarId β†’ Array Lean.FVarId β†’ Lean.Expr β†’ Lean.FVarId β†’ Lean.FVarId β†’ (Lean.Expr β†’ Option Lean.Expr) β†’ Lean.Expr β†’ Lean.Tactic.FunInd.M2✝ Lean.Expr
CategoryTheory.Discrete.ctorIdx
Mathlib.CategoryTheory.Discrete.Basic
{Ξ± : Type u₁} β†’ CategoryTheory.Discrete Ξ± β†’ β„•
CompleteLattice.mk._flat_ctor
Mathlib.Order.CompleteLattice.Defs
{Ξ± : Type u_8} β†’ (le lt : Ξ± β†’ Ξ± β†’ Prop) β†’ (βˆ€ (a : Ξ±), le a a) β†’ (βˆ€ (a b c : Ξ±), le a b β†’ le b c β†’ le a c) β†’ autoParam (βˆ€ (a b : Ξ±), lt a b ↔ le a b ∧ Β¬le b a) Preorder.lt_iff_le_not_ge._autoParam β†’ (βˆ€ (a b : Ξ±), le a b β†’ le b a β†’ a = b) β†’ (sup : Ξ± β†’ Ξ± β†’ Ξ±) β†’ (βˆ€ (a b : Ξ±), le a (sup a b)) β†’ (βˆ€ (a b : Ξ±), le b (sup a b)) β†’ (βˆ€ (a b c : Ξ±), le a c β†’ le b c β†’ le (sup a b) c) β†’ (inf : Ξ± β†’ Ξ± β†’ Ξ±) β†’ (βˆ€ (a b : Ξ±), le (inf a b) a) β†’ (βˆ€ (a b : Ξ±), le (inf a b) b) β†’ (βˆ€ (a b c : Ξ±), le a b β†’ le a c β†’ le a (inf b c)) β†’ (sSup : Set Ξ± β†’ Ξ±) β†’ (βˆ€ (s : Set Ξ±), βˆ€ a ∈ s, le a (sSup s)) β†’ (βˆ€ (s : Set Ξ±) (a : Ξ±), (βˆ€ b ∈ s, le b a) β†’ le (sSup s) a) β†’ (sInf : Set Ξ± β†’ Ξ±) β†’ (βˆ€ (s : Set Ξ±), βˆ€ a ∈ s, le (sInf s) a) β†’ (βˆ€ (s : Set Ξ±) (a : Ξ±), (βˆ€ b ∈ s, le a b) β†’ le a (sInf s)) β†’ (top : Ξ±) β†’ (βˆ€ (a : Ξ±), le a top) β†’ (bot : Ξ±) β†’ (βˆ€ (a : Ξ±), le bot a) β†’ CompleteLattice Ξ±
Lean.Lsp.Ipc.expandModuleHierarchyImports
Lean.Data.Lsp.Ipc
β„• β†’ Lean.Lsp.DocumentUri β†’ Lean.Lsp.Ipc.IpcM (Option Lean.Lsp.Ipc.ModuleHierarchy Γ— β„•)
Holor.assocLeft.eq_1
Mathlib.Data.Holor
βˆ€ {Ξ± : Type} {ds₁ dsβ‚‚ ds₃ : List β„•}, Holor.assocLeft = cast β‹―
AlgebraicGeometry.Scheme.pretopology._proof_3
Mathlib.AlgebraicGeometry.Sites.Pretopology
βˆ€ (P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) [P.IsMultiplicative], (AlgebraicGeometry.Scheme.precoverage P).IsStableUnderComposition
_auto._@.Mathlib.Order.ConditionallyCompleteLattice.Finset.2276574750._hygCtx._hyg.52
Mathlib.Order.ConditionallyCompleteLattice.Finset
Lean.Syntax
WeierstrassCurve.Projective.Point
Mathlib.AlgebraicGeometry.EllipticCurve.Projective.Point
{R : Type r} β†’ [CommRing R] β†’ WeierstrassCurve.Projective R β†’ Type r