name
string
module
string
type
string
_private.Aesop.Tree.ExtractProof.0.Aesop.extractProofGoal.match_3
Aesop.Tree.ExtractProof
(motive : Option (Lean.MVarId × Array Aesop.RappRef × Lean.Environment) → Sort u_1) → (__discr : Option (Lean.MVarId × Array Aesop.RappRef × Lean.Environment)) → ((postNormGoal : Lean.MVarId) → (children : Array Aesop.RappRef) → (postNormEnv : Lean.Environment) → motive (some (postNormGoal, children, postNormEnv))) → ((x : Option (Lean.MVarId × Array Aesop.RappRef × Lean.Environment)) → motive x) → motive __discr
QuotientGroup.fintypeQuotientRightRel
Mathlib.GroupTheory.Coset.Card
{α : Type u_1} → [inst : Group α] → {s : Subgroup α} → [Fintype (α ⧸ s)] → Fintype (Quotient (QuotientGroup.rightRel s))
_private.Lean.Meta.Tactic.Grind.Arith.Linear.Reify.0.Lean.Meta.Grind.Arith.Linear.reify?.isOfNatZero
Lean.Meta.Tactic.Grind.Arith.Linear.Reify
Lean.Expr → Lean.Meta.Grind.Arith.Linear.LinearM Bool
Lean.Omega.IntList.mul_get
Init.Omega.IntList
∀ (xs ys : Lean.Omega.IntList) (i : ℕ), (xs * ys).get i = xs.get i * ys.get i
Lean.Elab.MonadAutoImplicits.casesOn
Lean.Elab.InfoTree.Types
{m : Type → Type} → {motive : Lean.Elab.MonadAutoImplicits m → Sort u} → (t : Lean.Elab.MonadAutoImplicits m) → ((getAutoImplicits : m (Array Lean.Expr)) → motive { getAutoImplicits := getAutoImplicits }) → motive t
Batteries.RBNode.foldr_reverse
Batteries.Data.RBMap.Lemmas
∀ {α : Type u_1} {β : Type u_2} {t : Batteries.RBNode α} {f : α → β → β} {init : β}, Batteries.RBNode.foldr f t.reverse init = Batteries.RBNode.foldl (flip f) init t
lift_nhds_left
Mathlib.Topology.UniformSpace.Defs
∀ {α : Type ua} {β : Type ub} [inst : UniformSpace α] {x : α} {g : Set α → Filter β}, Monotone g → (nhds x).lift g = (uniformity α).lift fun s => g (UniformSpace.ball x s)
Option.get!_none
Init.Data.Option.Lemmas
∀ {α : Type u_1} [inst : Inhabited α], none.get! = default
_private.Lean.Compiler.LCNF.Simp.SimpM.0.Lean.Compiler.LCNF.Simp.withIncRecDepth.throwMaxRecDepth.match_3
Lean.Compiler.LCNF.Simp.SimpM
(motive : List Lean.Name → Sort u_1) → (x : List Lean.Name) → (Unit → motive []) → ((declName : Lean.Name) → (stack : List Lean.Name) → motive (declName :: stack)) → motive x
_private.Mathlib.Data.Set.Prod.0.Set.pi_inter_distrib._proof_1_1
Mathlib.Data.Set.Prod
∀ {ι : Type u_1} {α : ι → Type u_2} {s : Set ι} {t t₁ : (i : ι) → Set (α i)}, (s.pi fun i => t i ∩ t₁ i) = s.pi t ∩ s.pi t₁
_private.Init.Data.Iterators.Lemmas.Combinators.FlatMap.0.Std.Iterators.Iter.step_filterMapWithPostcondition.match_3.eq_3
Init.Data.Iterators.Lemmas.Combinators.FlatMap
∀ {α β : Type u_1} [inst : Std.Iterators.Iterator α Id β] {it : Std.Iter β} (motive : it.Step → Sort u_2) (h : it.IsPlausibleStep Std.Iterators.IterStep.done) (h_1 : (it' : Std.Iter β) → (out : β) → (h : it.IsPlausibleStep (Std.Iterators.IterStep.yield it' out)) → motive ⟨Std.Iterators.IterStep.yield it' out, h⟩) (h_2 : (it' : Std.Iter β) → (h : it.IsPlausibleStep (Std.Iterators.IterStep.skip it')) → motive ⟨Std.Iterators.IterStep.skip it', h⟩) (h_3 : (h : it.IsPlausibleStep Std.Iterators.IterStep.done) → motive ⟨Std.Iterators.IterStep.done, h⟩), (match ⟨Std.Iterators.IterStep.done, h⟩ with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => h_1 it' out h | ⟨Std.Iterators.IterStep.skip it', h⟩ => h_2 it' h | ⟨Std.Iterators.IterStep.done, h⟩ => h_3 h) = h_3 h
sub_lt_comm
Mathlib.Algebra.Order.Group.Unbundled.Basic
∀ {α : Type u} [inst : AddCommGroup α] [inst_1 : LT α] [AddLeftStrictMono α] {a b c : α}, a - b < c ↔ a - c < b
PadicInt.withValIntegersRingEquiv
Mathlib.NumberTheory.Padics.WithVal
{p : ℕ} → [inst : Fact (Nat.Prime p)] → ↥(Valued.integer (Rat.padicValuation p).Completion) ≃+* ℤ_[p]
CategoryTheory.Limits.Cofork.ext._proof_3
Mathlib.CategoryTheory.Limits.Shapes.Equalizers
∀ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {X Y : C} {f g : X ⟶ Y} {s t : CategoryTheory.Limits.Cofork f g} (i : s.pt ≅ t.pt) (w : CategoryTheory.CategoryStruct.comp s.π i.hom = t.π), CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Cofork.mkHom i.inv ⋯) (CategoryTheory.Limits.Cofork.mkHom i.hom w) = CategoryTheory.CategoryStruct.id t
Std.PRange.Least?.recOn
Init.Data.Range.Polymorphic.UpwardEnumerable
{α : Type u} → {motive : Std.PRange.Least? α → Sort u_1} → (t : Std.PRange.Least? α) → ((least? : Option α) → motive { least? := least? }) → motive t
ContinuousMap.Homotopy.casesOn
Mathlib.Topology.Homotopy.Basic
{X : Type u} → {Y : Type v} → [inst : TopologicalSpace X] → [inst_1 : TopologicalSpace Y] → {f₀ f₁ : C(X, Y)} → {motive : f₀.Homotopy f₁ → Sort u_1} → (t : f₀.Homotopy f₁) → ((toContinuousMap : C(↑unitInterval × X, Y)) → (map_zero_left : ∀ (x : X), toContinuousMap.toFun (0, x) = f₀ x) → (map_one_left : ∀ (x : X), toContinuousMap.toFun (1, x) = f₁ x) → motive { toContinuousMap := toContinuousMap, map_zero_left := map_zero_left, map_one_left := map_one_left }) → motive t
AddHomClass.toAddHom.eq_1
Mathlib.Algebra.Group.Hom.Defs
∀ {M : Type u_4} {N : Type u_5} {F : Type u_9} [inst : Add M] [inst_1 : Add N] [inst_2 : FunLike F M N] [inst_3 : AddHomClass F M N] (f : F), ↑f = { toFun := ⇑f, map_add' := ⋯ }
TopologicalSpace.NonemptyCompacts.coe_map
Mathlib.Topology.Sets.Compacts
∀ {α : Type u_1} {β : Type u_2} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] {f : α → β} (hf : Continuous f) (s : TopologicalSpace.NonemptyCompacts α), ↑(TopologicalSpace.NonemptyCompacts.map f hf s) = f '' ↑s
Std.PreorderPackage.ofLE._proof_3
Init.Data.Order.PackageFactories
∀ (α : Type u_1) (args : Std.Packages.PreorderOfLEArgs α), Std.IsPreorder α
_private.Mathlib.Analysis.Convex.Function.0.strictConvexOn_iff_div._simp_1_1
Mathlib.Analysis.Convex.Function
∀ {α : Type u_1} [inst : Zero α] [inst_1 : One α] [inst_2 : PartialOrder α] [ZeroLEOneClass α] [NeZero 1], (0 < 1) = True
Subring.mem_mk'._simp_1
Mathlib.Algebra.Ring.Subring.Defs
∀ {R : Type u} [inst : Ring R] {s : Set R} {sm : Submonoid R} (hm : ↑sm = s) {sa : AddSubgroup R} (ha : ↑sa = s) {x : R}, (x ∈ Subring.mk' s sm sa hm ha) = (x ∈ s)
IsLowerSet.null_frontier
Mathlib.MeasureTheory.Order.UpperLower
∀ {ι : Type u_1} [inst : Fintype ι] {s : Set (ι → ℝ)}, IsLowerSet s → MeasureTheory.volume (frontier s) = 0
_private.Aesop.RuleSet.0.Aesop.BaseRuleSet.merge.match_1
Aesop.RuleSet
(motive : Option (Aesop.UnorderedArraySet Aesop.RuleName) → Sort u_1) → (x : Option (Aesop.UnorderedArraySet Aesop.RuleName)) → (Unit → motive none) → ((ns : Aesop.UnorderedArraySet Aesop.RuleName) → motive (some ns)) → motive x
MulEquiv.symmEquiv_apply_apply
Mathlib.Algebra.Group.Equiv.Defs
∀ (P : Type u_9) (Q : Type u_10) [inst : Mul P] [inst_1 : Mul Q] (h : P ≃* Q) (a : Q), ((MulEquiv.symmEquiv P Q) h) a = h.symm a
CategoryTheory.Oplax.OplaxTrans.naturality_comp_assoc
Mathlib.CategoryTheory.Bicategory.NaturalTransformation.Oplax
∀ {B : Type u₁} [inst : CategoryTheory.Bicategory B] {C : Type u₂} [inst_1 : CategoryTheory.Bicategory C] {F G : CategoryTheory.OplaxFunctor B C} (self : CategoryTheory.Oplax.OplaxTrans F G) {a b c : B} (f : a ⟶ b) (g : b ⟶ c) {Z : F.obj a ⟶ G.obj c} (h : CategoryTheory.CategoryStruct.comp (self.app a) (CategoryTheory.CategoryStruct.comp (G.map f) (G.map g)) ⟶ Z), CategoryTheory.CategoryStruct.comp (self.naturality (CategoryTheory.CategoryStruct.comp f g)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.app a) (G.mapComp f g)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g) (self.app c)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (self.app c)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (self.naturality g)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (self.app b) (G.map g)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.naturality f) (G.map g)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (self.app a) (G.map f) (G.map g)).hom h)))))
MeasureTheory.measureUnivNNReal
Mathlib.MeasureTheory.Measure.Typeclasses.Finite
{α : Type u_1} → {m0 : MeasurableSpace α} → MeasureTheory.Measure α → NNReal
Lean.Server.Watchdog.handleDidChange
Lean.Server.Watchdog
Lean.Lsp.DidChangeTextDocumentParams → Lean.Server.Watchdog.ServerM Unit
isPRadical_iff
Mathlib.FieldTheory.IsPerfectClosure
∀ {K : Type u_1} {L : Type u_2} [inst : CommSemiring K] [inst_1 : CommSemiring L] (i : K →+* L) (p : ℕ), IsPRadical i p ↔ (∀ (x : L), ∃ n y, i y = x ^ p ^ n) ∧ RingHom.ker i ≤ pNilradical K p
Filter.Tendsto.nonpos_add_atBot
Mathlib.Order.Filter.AtTopBot.Monoid
∀ {α : Type u_1} {M : Type u_2} [inst : AddCommMonoid M] [inst_1 : PartialOrder M] [IsOrderedAddMonoid M] {l : Filter α} {f g : α → M}, (∀ (x : α), f x ≤ 0) → Filter.Tendsto g l Filter.atBot → Filter.Tendsto (fun x => f x + g x) l Filter.atBot
MeasureTheory.eLpNorm_conj
Mathlib.MeasureTheory.Function.LpSeminorm.Basic
∀ {α : Type u_1} {m0 : MeasurableSpace α} {𝕜 : Type u_7} [inst : RCLike 𝕜] (f : α → 𝕜) (p : ENNReal) (μ : MeasureTheory.Measure α), MeasureTheory.eLpNorm ((starRingEnd (α → 𝕜)) f) p μ = MeasureTheory.eLpNorm f p μ
Std.Internal.IO.Process.ResourceUsageStats.casesOn
Std.Internal.Async.Process
{motive : Std.Internal.IO.Process.ResourceUsageStats → Sort u} → (t : Std.Internal.IO.Process.ResourceUsageStats) → ((cpuUserTime cpuSystemTime : Std.Time.Millisecond.Offset) → (peakResidentSetSizeKb sharedMemorySizeKb unsharedDataSizeKb unsharedStackSizeKb minorPageFaults majorPageFaults swapOperations blockInputOps blockOutputOps messagesSent messagesReceived signalsReceived voluntaryContextSwitches involuntaryContextSwitches : UInt64) → motive { cpuUserTime := cpuUserTime, cpuSystemTime := cpuSystemTime, peakResidentSetSizeKb := peakResidentSetSizeKb, sharedMemorySizeKb := sharedMemorySizeKb, unsharedDataSizeKb := unsharedDataSizeKb, unsharedStackSizeKb := unsharedStackSizeKb, minorPageFaults := minorPageFaults, majorPageFaults := majorPageFaults, swapOperations := swapOperations, blockInputOps := blockInputOps, blockOutputOps := blockOutputOps, messagesSent := messagesSent, messagesReceived := messagesReceived, signalsReceived := signalsReceived, voluntaryContextSwitches := voluntaryContextSwitches, involuntaryContextSwitches := involuntaryContextSwitches }) → motive t
_private.Mathlib.RingTheory.SimpleModule.Isotypic.0.Submodule.le_linearEquiv_of_sSup_eq_top.match_1_3
Mathlib.RingTheory.SimpleModule.Isotypic
∀ {R : Type u_2} {M : Type u_1} [inst : Ring R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] (N : Submodule R M) (s : Set (Submodule R M)) (w : Submodule R M) (compl : IsCompl N w) (motive : (∃ m ∈ s, N.linearProjOfIsCompl w compl ∘ₗ m.subtype ≠ 0) → Prop) (x : ∃ m ∈ s, N.linearProjOfIsCompl w compl ∘ₗ m.subtype ≠ 0), (∀ (m : Submodule R M) (hm : m ∈ s) (ne : N.linearProjOfIsCompl w compl ∘ₗ m.subtype ≠ 0), motive ⋯) → motive x
IsNilpotent.charpoly_eq_X_pow_finrank
Mathlib.LinearAlgebra.Eigenspace.Zero
∀ {R : Type u_1} {M : Type u_3} [inst : CommRing R] [IsDomain R] [inst_2 : AddCommGroup M] [inst_3 : Module R M] [inst_4 : Module.Finite R M] [inst_5 : Module.Free R M] {φ : Module.End R M}, IsNilpotent φ → LinearMap.charpoly φ = Polynomial.X ^ Module.finrank R M
Lean.Meta.DefEqCacheKind.toCtorIdx
Lean.Meta.ExprDefEq
Lean.Meta.DefEqCacheKind → ℕ
Std.TreeSet.get?_erase
Std.Data.TreeSet.Lemmas
∀ {α : Type u} {cmp : α → α → Ordering} {t : Std.TreeSet α cmp} [Std.TransCmp cmp] {k a : α}, (t.erase k).get? a = if cmp k a = Ordering.eq then none else t.get? a
Subsemiring.instCompleteLattice._proof_2
Mathlib.Algebra.Ring.Subsemiring.Basic
∀ {R : Type u_1} [inst : NonAssocSemiring R] (x x_1 : Subsemiring R) (x_2 : R), x_2 ∈ ↑x ∧ x_2 ∈ ↑x_1 → x_2 ∈ ↑x
BitVec.toInt_neg_of_msb_true
Init.Data.BitVec.Lemmas
∀ {w : ℕ} {x : BitVec w}, x.msb = true → x.toInt < 0
CategoryTheory.Limits.HasZeroObject.instMono
Mathlib.CategoryTheory.Limits.Shapes.ZeroObjects
∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Limits.HasZeroObject C] {X : C} (f : 0 ⟶ X), CategoryTheory.Mono f
Qq.getLevelQ
Mathlib.Util.Qq
Lean.Expr → Lean.MetaM ((u : Lean.Level) × Q(Sort u))
_private.Mathlib.RingTheory.Jacobson.Ideal.0.Ideal.jacobson_eq_top_iff.match_1_3
Mathlib.RingTheory.Jacobson.Ideal
∀ {R : Type u_1} [inst : Ring R] {I : Ideal R} (x : Ideal R) (motive : x ∈ {J | I ≤ J ∧ J.IsMaximal} → Prop) (x_1 : x ∈ {J | I ≤ J ∧ J.IsMaximal}), (∀ (hij : I ≤ x) (right : x.IsMaximal), motive ⋯) → motive x_1
_private.Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat.0.Nat.NatOffset.ctorElim
Lean.Meta.Tactic.Simp.BuiltinSimprocs.Nat
{motive : Nat.NatOffset✝ → Sort u} → (ctorIdx : ℕ) → (t : Nat.NatOffset✝¹) → ctorIdx = Nat.NatOffset.ctorIdx✝ t → Nat.NatOffset.ctorElimType✝ ctorIdx → motive t
CategoryTheory.Equivalence.counitInv_app_tensor_comp_functor_map_δ_inverse_assoc
Mathlib.CategoryTheory.Monoidal.Functor
∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type u₂} [inst_2 : CategoryTheory.Category.{v₂, u₂} D] [inst_3 : CategoryTheory.MonoidalCategory D] (e : C ≌ D) [inst_4 : e.functor.Monoidal] [inst_5 : e.inverse.Monoidal] [e.IsMonoidal] (X Y : C) {Z : D} (h : e.functor.obj (CategoryTheory.MonoidalCategoryStruct.tensorObj (e.inverse.obj (e.functor.obj X)) (e.inverse.obj (e.functor.obj Y))) ⟶ Z), CategoryTheory.CategoryStruct.comp (e.counitInv.app (CategoryTheory.MonoidalCategoryStruct.tensorObj (e.functor.obj X) (e.functor.obj Y))) (CategoryTheory.CategoryStruct.comp (e.functor.map (CategoryTheory.Functor.OplaxMonoidal.δ e.inverse (e.functor.obj X) (e.functor.obj Y))) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.LaxMonoidal.μ e.functor X Y) (CategoryTheory.CategoryStruct.comp (e.functor.map (CategoryTheory.MonoidalCategoryStruct.tensorHom (e.unitIso.hom.app X) (e.unitIso.hom.app Y))) h)
UpperSet.instAddCommMonoid._proof_1
Mathlib.Algebra.Order.UpperLower
∀ {α : Type u_1} [inst : AddCommGroup α] [inst_1 : PartialOrder α] [inst_2 : IsOrderedAddMonoid α] (s : UpperSet α), s + 0 = s
SupBotHom.cancel_left._simp_1
Mathlib.Order.Hom.BoundedLattice
∀ {α : Type u_2} {β : Type u_3} {γ : Type u_4} [inst : Max α] [inst_1 : Bot α] [inst_2 : Max β] [inst_3 : Bot β] [inst_4 : Max γ] [inst_5 : Bot γ] {g : SupBotHom β γ} {f₁ f₂ : SupBotHom α β}, Function.Injective ⇑g → (g.comp f₁ = g.comp f₂) = (f₁ = f₂)
IntermediateField.subsingleton_of_rank_adjoin_eq_one
Mathlib.FieldTheory.IntermediateField.Adjoin.Basic
∀ {F : Type u_1} [inst : Field F] {E : Type u_2} [inst_1 : Field E] [inst_2 : Algebra F E], (∀ (x : E), Module.rank F ↥F⟮x⟯ = 1) → Subsingleton (IntermediateField F E)
Aesop.GoalWithMVars.ctorIdx
Aesop.Script.GoalWithMVars
Aesop.GoalWithMVars → ℕ
AddUnits.leftOfAdd._proof_2
Mathlib.Algebra.Group.Commute.Units
∀ {M : Type u_1} [inst : AddMonoid M] (u : AddUnits M) (a b : M), a + b = ↑u → AddCommute a b → b + ↑(-u) + a = 0
_private.Mathlib.Algebra.Order.Archimedean.Class.0.MulArchimedeanClass.orderHom_injective._simp_1_1
Mathlib.Algebra.Order.Archimedean.Class
∀ {M : Type u_1} [inst : CommGroup M] [inst_1 : LinearOrder M] [inst_2 : IsOrderedMonoid M] {a b : M}, (MulArchimedeanClass.mk a = MulArchimedeanClass.mk b) = ((∃ m, |b|ₘ ≤ |a|ₘ ^ m) ∧ ∃ n, |a|ₘ ≤ |b|ₘ ^ n)
Sum.Lex.denselyOrdered_of_noMaxOrder
Mathlib.Data.Sum.Order
∀ {α : Type u_1} {β : Type u_2} [inst : LT α] [inst_1 : LT β] [DenselyOrdered α] [DenselyOrdered β] [NoMaxOrder α], DenselyOrdered (Lex (α ⊕ β))
Lean.Lsp.FileChangeType._sizeOf_inst
Lean.Data.Lsp.Workspace
SizeOf Lean.Lsp.FileChangeType
OrderAddMonoidHom.addCommute_inl_inr
Mathlib.Algebra.Order.Monoid.Lex
∀ {α : Type u_1} {β : Type u_2} [inst : AddMonoid α] [inst_1 : PartialOrder α] [inst_2 : AddMonoid β] [inst_3 : Preorder β] (m : α) (n : β), AddCommute ((OrderAddMonoidHom.inl α β) m) ((OrderAddMonoidHom.inr α β) n)
Std.DHashMap.Raw.getKey?_insert_self
Std.Data.DHashMap.RawLemmas
∀ {α : Type u} {β : α → Type v} {m : Std.DHashMap.Raw α β} [inst : BEq α] [inst_1 : Hashable α] [EquivBEq α] [LawfulHashable α], m.WF → ∀ {k : α} {v : β k}, (m.insert k v).getKey? k = some k
sup_sdiff
Mathlib.Order.Heyting.Basic
∀ {α : Type u_2} [inst : GeneralizedCoheytingAlgebra α] {a b c : α}, (a ⊔ b) \ c = a \ c ⊔ b \ c
Lean.Lsp.CompletionItemKind.enumMember
Lean.Data.Lsp.LanguageFeatures
Lean.Lsp.CompletionItemKind
Lean.Server.References.removeWorkerRefs
Lean.Server.References
Lean.Server.References → Lean.Name → Lean.Server.References
_private.Mathlib.MeasureTheory.Measure.Haar.Unique.0.MeasureTheory.Measure.integral_isMulLeftInvariant_isMulRightInvariant_combo._simp_1_6
Mathlib.MeasureTheory.Measure.Haar.Unique
∀ {α : Type u_1} [inst : DivisionMonoid α] (a : α) (m n : ℤ), (a ^ m) ^ n = a ^ (m * n)
AddOpposite.instSubtractionMonoid.eq_1
Mathlib.Algebra.Group.Opposite
∀ {α : Type u_1} [inst : SubtractionMonoid α], AddOpposite.instSubtractionMonoid = { toSubNegMonoid := AddOpposite.instSubNegMonoid, neg_neg := ⋯, neg_add_rev := ⋯, neg_eq_of_add := ⋯ }
CategoryTheory.Functor.OplaxMonoidal.comp_δ
Mathlib.CategoryTheory.Monoidal.Functor
∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type u₂} [inst_2 : CategoryTheory.Category.{v₂, u₂} D] [inst_3 : CategoryTheory.MonoidalCategory D] {E : Type u₃} [inst_4 : CategoryTheory.Category.{v₃, u₃} E] [inst_5 : CategoryTheory.MonoidalCategory E] (F : CategoryTheory.Functor C D) (G : CategoryTheory.Functor D E) [inst_6 : F.OplaxMonoidal] [inst_7 : G.OplaxMonoidal] (X Y : C), CategoryTheory.Functor.OplaxMonoidal.δ (F.comp G) X Y = CategoryTheory.CategoryStruct.comp (G.map (CategoryTheory.Functor.OplaxMonoidal.δ F X Y)) (CategoryTheory.Functor.OplaxMonoidal.δ G (F.obj X) (F.obj Y))
dist_vadd_left
Mathlib.Analysis.Normed.Group.AddTorsor
∀ {V : Type u_2} {P : Type u_3} [inst : SeminormedAddCommGroup V] [inst_1 : PseudoMetricSpace P] [inst_2 : NormedAddTorsor V P] (v : V) (x : P), dist (v +ᵥ x) x = ‖v‖
TopologicalSpace.CompactOpens.map
Mathlib.Topology.Sets.Compacts
{α : Type u_1} → {β : Type u_2} → [inst : TopologicalSpace α] → [inst_1 : TopologicalSpace β] → (f : α → β) → Continuous f → IsOpenMap f → TopologicalSpace.CompactOpens α → TopologicalSpace.CompactOpens β
InfiniteGalois.isOpen_and_normal_iff_finite_and_isGalois
Mathlib.FieldTheory.Galois.Infinite
∀ {k : Type u_1} {K : Type u_2} [inst : Field k] [inst_1 : Field K] [inst_2 : Algebra k K] (L : IntermediateField k K) [IsGalois k K], IsOpen L.fixingSubgroup.carrier ∧ L.fixingSubgroup.Normal ↔ FiniteDimensional k ↥L ∧ IsGalois k ↥L
IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply
Mathlib.NumberTheory.NumberField.Cyclotomic.Basic
∀ {n : ℕ} {K : Type u} [inst : Field K] {ζ : K} [inst_1 : NeZero n] [inst_2 : CharZero K] [inst_3 : IsCyclotomicExtension {n} ℚ K] (hζ : IsPrimitiveRoot ζ n) (a : ↥(Algebra.adjoin ℤ {ζ})), hζ.adjoinEquivRingOfIntegers a = (IsIntegralClosure.lift ℤ (NumberField.RingOfIntegers K) K) a
Std.Time.Formats.leanDateTimeWithIdentifierAndNanos
Std.Time.Format
Std.Time.GenericFormat Std.Time.Awareness.any
PartENat.lt_coe_iff
Mathlib.Data.Nat.PartENat
∀ (x : PartENat) (n : ℕ), x < ↑n ↔ ∃ (h : x.Dom), x.get h < n
Std.DHashMap.Raw.size_alter_eq_sub_one
Std.Data.DHashMap.RawLemmas
∀ {α : Type u} {β : α → Type v} [inst : BEq α] [inst_1 : Hashable α] {m : Std.DHashMap.Raw α β} [inst_2 : LawfulBEq α] {k : α} {f : Option (β k) → Option (β k)}, m.WF → k ∈ m → (f (m.get? k)).isNone = true → (m.alter k f).size = m.size - 1
Subtype.impEmbedding._proof_1
Mathlib.Logic.Embedding.Basic
∀ {α : Type u_1} (p q : α → Prop), (∀ (x : α), p x → q x) → ∀ (x : { x // p x }), q ↑x
EquivLike.pairwise_comp_iff
Mathlib.Logic.Equiv.Pairwise
∀ {X : Type u_1} {Y : Type u_2} {F : Sort u_3} [inst : EquivLike F Y X] (f : F) (p : X → X → Prop), Pairwise (Function.onFun p ⇑f) ↔ Pairwise p
ModuleCat.Tilde.stalkToFiberLinearMap
Mathlib.AlgebraicGeometry.Modules.Tilde
{R : Type u} → [inst : CommRing R] → (M : ModuleCat R) → (x : ↑(AlgebraicGeometry.PrimeSpectrum.Top R)) → M.tildeInModuleCat.stalk x ⟶ ModuleCat.of R (LocalizedModule x.asIdeal.primeCompl ↑M)
ContinuousMapZero.toContinuousMapHom._proof_3
Mathlib.Topology.ContinuousMap.ContinuousMapZero
∀ {X : Type u_1} {R : Type u_2} [inst : Zero X] [inst_1 : TopologicalSpace X] [inst_2 : TopologicalSpace R] [inst_3 : CommSemiring R] [inst_4 : IsTopologicalSemiring R] (x : R) (x_1 : ContinuousMapZero X R), ↑(x • x_1) = ↑(x • x_1)
_private.Mathlib.CategoryTheory.Sites.Hypercover.Zero.0.CategoryTheory.PreZeroHypercover.Hom.ext'_iff.match_1_1
Mathlib.CategoryTheory.Sites.Hypercover.Zero
∀ {C : Type u_4} [inst : CategoryTheory.Category.{u_3, u_4} C] {S : C} {E : CategoryTheory.PreZeroHypercover S} {F : CategoryTheory.PreZeroHypercover S} {f g : E.Hom F} (motive : (∃ (hs : f.s₀ = g.s₀), ∀ (i : E.I₀), f.h₀ i = CategoryTheory.CategoryStruct.comp (g.h₀ i) (CategoryTheory.eqToHom ⋯)) → Prop) (x : ∃ (hs : f.s₀ = g.s₀), ∀ (i : E.I₀), f.h₀ i = CategoryTheory.CategoryStruct.comp (g.h₀ i) (CategoryTheory.eqToHom ⋯)), (∀ (hs : f.s₀ = g.s₀) (hh : ∀ (i : E.I₀), f.h₀ i = CategoryTheory.CategoryStruct.comp (g.h₀ i) (CategoryTheory.eqToHom ⋯)), motive ⋯) → motive x
Ordinal.pred_le_self
Mathlib.SetTheory.Ordinal.Arithmetic
∀ (o : Ordinal.{u_4}), o.pred ≤ o
Semiquot.mem_pure._simp_1
Mathlib.Data.Semiquot
∀ {α : Type u_1} {a b : α}, (a ∈ pure b) = (a = b)
RingHom.op._proof_17
Mathlib.Algebra.Ring.Opposite
∀ {R : Type u_1} {S : Type u_2} [inst : NonAssocSemiring R] [inst_1 : NonAssocSemiring S] (x : Rᵐᵒᵖ →+* Sᵐᵒᵖ) (x_1 y : Rᵐᵒᵖ), (↑(AddMonoidHom.mulOp { toFun := (↑(AddMonoidHom.mulUnop x.toAddMonoidHom)).toFun, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }.toAddMonoidHom)).toFun (x_1 + y) = (↑(AddMonoidHom.mulOp { toFun := (↑(AddMonoidHom.mulUnop x.toAddMonoidHom)).toFun, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }.toAddMonoidHom)).toFun x_1 + (↑(AddMonoidHom.mulOp { toFun := (↑(AddMonoidHom.mulUnop x.toAddMonoidHom)).toFun, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }.toAddMonoidHom)).toFun y
Ordnode.Valid'.rotateL_lemma₁
Mathlib.Data.Ordmap.Ordset
∀ {a b c : ℕ}, 3 * a ≤ b + c → c ≤ 3 * b → a ≤ 3 * b
_private.Lean.Meta.Tactic.Grind.PropagateInj.0.Lean.Meta.Grind.getInvFor?._sparseCasesOn_5
Lean.Meta.Tactic.Grind.PropagateInj
{α : Type u} → {motive : List α → Sort u_1} → (t : List α) → motive [] → (t.ctorIdx ≠ 0 → motive t) → motive t
PNat.find_eq_one._simp_1
Mathlib.Data.PNat.Find
∀ {p : ℕ+ → Prop} [inst : DecidablePred p] (h : ∃ n, p n), (PNat.find h = 1) = p 1
Polynomial.eval₂_homogenize_of_eq_one
Mathlib.Algebra.Polynomial.Homogenize
∀ {R : Type u_1} [inst : CommSemiring R] {S : Type u_2} [inst_1 : CommSemiring S] {p : Polynomial R} {n : ℕ}, p.natDegree ≤ n → ∀ (f : R →+* S) (g : Fin 2 → S), g 1 = 1 → MvPolynomial.eval₂ f g (p.homogenize n) = Polynomial.eval₂ f (g 0) p
groupHomology.H0π_comp_map_apply
Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
∀ {k G H : Type u} [inst : CommRing k] [inst_1 : Group G] [inst_2 : Group H] {A : Rep k G} {B : Rep k H} (f : G →* H) (φ : A ⟶ (Action.res (ModuleCat k) f).obj B) (x : CategoryTheory.ToType A.V), (CategoryTheory.ConcreteCategory.hom (groupHomology.map f φ 0)) ((CategoryTheory.ConcreteCategory.hom (groupHomology.H0π A)) x) = (CategoryTheory.ConcreteCategory.hom (groupHomology.H0π B)) ((CategoryTheory.ConcreteCategory.hom φ.hom) x)
MessageType.log.elim
Lean.Data.Lsp.Window
{motive : MessageType → Sort u} → (t : MessageType) → t.ctorIdx = 3 → motive MessageType.log → motive t
Std.DHashMap.Internal.Raw₀.getKeyD_insertMany_emptyWithCapacity_list_of_contains_eq_false
Std.Data.DHashMap.Internal.RawLemmas
∀ {α : Type u} {β : α → Type v} [inst : BEq α] [inst_1 : Hashable α] [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k fallback : α}, (List.map Sigma.fst l).contains k = false → (↑(Std.DHashMap.Internal.Raw₀.emptyWithCapacity.insertMany l)).getKeyD k fallback = fallback
_private.Mathlib.Algebra.Order.Group.Unbundled.Int.0.Int.ediv_eq_zero_of_lt_abs.match_1_1
Mathlib.Algebra.Order.Group.Unbundled.Int
∀ {a : ℤ} (motive : (b x : ℤ) → x = ↑b.natAbs → a < x → Prop) (b x : ℤ) (x_1 : x = ↑b.natAbs) (H2 : a < x), (∀ (n : ℕ) (H2 : a < ↑(↑n).natAbs), motive (Int.ofNat n) ↑(↑n).natAbs ⋯ H2) → (∀ (n : ℕ) (H2 : a < ↑(Int.negSucc n).natAbs), motive (Int.negSucc n) ↑(Int.negSucc n).natAbs ⋯ H2) → motive b x x_1 H2
AddSubmonoid.coe_multiset_sum
Mathlib.Algebra.Group.Submonoid.BigOperators
∀ {M : Type u_4} [inst : AddCommMonoid M] (S : AddSubmonoid M) (m : Multiset ↥S), ↑m.sum = (Multiset.map Subtype.val m).sum
_private.Mathlib.RingTheory.UniqueFactorizationDomain.Basic.0.irreducible_iff_prime_of_existsUnique_irreducible_factors.match_1_3
Mathlib.RingTheory.UniqueFactorizationDomain.Basic
∀ {α : Type u_1} [inst : CancelCommMonoidWithZero α] (p : α) (fa fb : Multiset α) (motive : (∃ b ∈ fa + fb, Associated p b) → Prop) (x : ∃ b ∈ fa + fb, Associated p b), (∀ (q : α) (hqf : q ∈ fa + fb) (hq : Associated p q), motive ⋯) → motive x
_private.Aesop.Frontend.Command.0.Aesop.Frontend.Parser._aux_Aesop_Frontend_Command___elabRules_Aesop_Frontend_Parser_addRules_1.match_1
Aesop.Frontend.Command
(motive : Aesop.GlobalRuleSetMember × Array Aesop.RuleSetName → Sort u_1) → (x : Aesop.GlobalRuleSetMember × Array Aesop.RuleSetName) → ((rule : Aesop.GlobalRuleSetMember) → (rsNames : Array Aesop.RuleSetName) → motive (rule, rsNames)) → motive x
CategoryTheory.ObjectProperty.IsStrongGenerator.isDense_colimitsCardinalClosure_ι
Mathlib.CategoryTheory.Presentable.StrongGenerator
∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {κ : Cardinal.{w}} [inst_1 : Fact κ.IsRegular] [CategoryTheory.Limits.HasColimitsOfSize.{w, w, v, u} C] [CategoryTheory.LocallySmall.{w, v, u} C] {P : CategoryTheory.ObjectProperty C} [CategoryTheory.ObjectProperty.Small.{w, v, u} P], P.IsStrongGenerator → P ≤ CategoryTheory.isCardinalPresentable C κ → (P.colimitsCardinalClosure κ).ι.IsDense
MvPolynomial.smulCommClass
Mathlib.Algebra.MvPolynomial.Basic
∀ {R : Type u} {S₁ : Type v} {S₂ : Type w} {σ : Type u_1} [inst : CommSemiring S₂] [inst_1 : SMulZeroClass R S₂] [inst_2 : SMulZeroClass S₁ S₂] [SMulCommClass R S₁ S₂], SMulCommClass R S₁ (MvPolynomial σ S₂)
DirectSum.toAddMonoid
Mathlib.Algebra.DirectSum.Basic
{ι : Type v} → {β : ι → Type w} → [inst : (i : ι) → AddCommMonoid (β i)] → [DecidableEq ι] → {γ : Type u₁} → [inst_2 : AddCommMonoid γ] → ((i : ι) → β i →+ γ) → (DirectSum ι fun i => β i) →+ γ
Sigma.Lex.boundedOrder
Mathlib.Data.Sigma.Order
{ι : Type u_1} → {α : ι → Type u_2} → [inst : PartialOrder ι] → [inst_1 : BoundedOrder ι] → [inst_2 : (i : ι) → Preorder (α i)] → [OrderBot (α ⊥)] → [OrderTop (α ⊤)] → BoundedOrder (Σₗ (i : ι), α i)
Representation.finsuppLEquivFreeAsModule._proof_4
Mathlib.RepresentationTheory.Basic
∀ (k : Type u_1) (G : Type u_2) [inst : CommSemiring k] [inst_1 : Monoid G] (α : Type u_3), Function.LeftInverse (AddEquiv.refl (α →₀ MonoidAlgebra k G)).invFun (AddEquiv.refl (α →₀ MonoidAlgebra k G)).toFun
_private.Mathlib.Order.ConditionallyCompleteLattice.Indexed.0.ciSup_subtype._simp_1_5
Mathlib.Order.ConditionallyCompleteLattice.Indexed
∀ {α : Sort u} {p : α → Prop} {q : { a // p a } → Prop}, (∃ x, q x) = ∃ a, ∃ (b : p a), q ⟨a, b⟩
_private.Mathlib.Algebra.ModEq.0.AddCommGroup.natCast_modEq_natCast._simp_1_1
Mathlib.Algebra.ModEq
∀ {a b n : ℕ}, (a ≡ b [MOD n]) = (↑a ≡ ↑b [ZMOD ↑n])
Std.DTreeMap.Internal.Cell.ofOption
Std.Data.DTreeMap.Internal.Cell
{α : Type u} → {β : α → Type v} → [inst : Ord α] → (k : α) → Option (β k) → Std.DTreeMap.Internal.Cell α β (compare k)
Order.Ideal.PrimePair.I_isPrime
Mathlib.Order.PrimeIdeal
∀ {P : Type u_1} [inst : Preorder P] (IF : Order.Ideal.PrimePair P), IF.I.IsPrime
_private.Mathlib.LinearAlgebra.Prod.0.LinearMap.exists_linearEquiv_eq_graph._simp_1_2
Mathlib.LinearAlgebra.Prod
∀ {R : Type u_1} {R₂ : Type u_2} {M : Type u_5} {M₂ : Type u_6} [inst : Semiring R] [inst_1 : Semiring R₂] [inst_2 : AddCommMonoid M] [inst_3 : AddCommMonoid M₂] [inst_4 : Module R M] [inst_5 : Module R₂ M₂] {τ₁₂ : R →+* R₂} {F : Type u_10} [inst_6 : FunLike F M M₂] [inst_7 : SemilinearMapClass F τ₁₂ M M₂] [inst_8 : RingHomSurjective τ₁₂] {f : F} {x : M₂}, (x ∈ LinearMap.range f) = ∃ y, f y = x
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.Const.get!_eq_getD_default._simp_1_3
Std.Data.DTreeMap.Internal.Lemmas
∀ {α : Type u} {β : α → Type v} {x : Ord α} {t : Std.DTreeMap.Internal.Impl α β} {k : α}, (k ∈ t) = (Std.DTreeMap.Internal.Impl.contains k t = true)
Pi.mulZeroOneClass._proof_2
Mathlib.Algebra.GroupWithZero.Pi
∀ {ι : Type u_1} {α : ι → Type u_2} [inst : (i : ι) → MulZeroOneClass (α i)] (a : (i : ι) → α i), a * 1 = a
IsStronglyTranscendental.iff_of_isLocalization
Mathlib.RingTheory.Algebraic.StronglyTranscendental
∀ {R : Type u_1} {S : Type u_2} {T : Type u_3} [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : Algebra R S] [inst_3 : CommRing T] [inst_4 : Algebra R T] [inst_5 : Algebra S T] {M : Submonoid S}, M ≤ nonZeroDivisors S → ∀ [IsLocalization M T] [IsScalarTower R S T] {x : S}, IsStronglyTranscendental R ((algebraMap S T) x) ↔ IsStronglyTranscendental R x
CommBialgCat.Hom
Mathlib.Algebra.Category.CommBialgCat
{R : Type u} → [inst : CommRing R] → CommBialgCat R → CommBialgCat R → Type v
CategoryTheory.MonoidalCategory.MonoidalRightAction.hom_inv_actionHomLeft
Mathlib.CategoryTheory.Monoidal.Action.Basic
∀ {C : Type u_1} {D : Type u_2} [inst : CategoryTheory.Category.{u_4, u_1} C] [inst_1 : CategoryTheory.Category.{u_3, u_2} D] [inst_2 : CategoryTheory.MonoidalCategory C] [inst_3 : CategoryTheory.MonoidalCategory.MonoidalRightAction C D] {x y : D} (f : x ≅ y) (z : C), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft f.hom z) (CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionHomLeft f.inv z) = CategoryTheory.CategoryStruct.id (CategoryTheory.MonoidalCategory.MonoidalRightActionStruct.actionObj x z)
Action.diagonalOneIsoLeftRegular
Mathlib.CategoryTheory.Action.Concrete
(G : Type u_1) → [inst : Monoid G] → Action.diagonal G 1 ≅ Action.leftRegular G