name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Set.image_neg_of_apply_neg_eq
Mathlib.Algebra.Group.Pointwise.Set.Basic
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : InvolutiveNeg Ξ±] {s : Set Ξ±} {f g : Ξ± β†’ Ξ²}, (βˆ€ x ∈ s, f (-x) = g x) β†’ f '' (-s) = g '' s
BddAbove.of_closure
Mathlib.Topology.Order.OrderClosed
βˆ€ {Ξ± : Type u} [inst : TopologicalSpace Ξ±] [inst_1 : Preorder Ξ±] {s : Set Ξ±}, BddAbove (closure s) β†’ BddAbove s
Qq._aux_Qq_Commands___elabRules_Qq_termBy_elabq__1
Qq.Commands
Lean.Elab.Term.TermElab
_private.Mathlib.Combinatorics.Matroid.Map.0.Matroid.map_dual._simp_1_6
Mathlib.Combinatorics.Matroid.Map
βˆ€ {a b : Prop}, (a ∧ b ↔ a) = (a β†’ b)
Filter.limsInf_le_of_le
Mathlib.Order.LiminfLimsup
βˆ€ {Ξ± : Type u_1} [inst : ConditionallyCompleteLattice Ξ±] {f : Filter Ξ±} {a : Ξ±}, autoParam (Filter.IsBounded (fun x1 x2 => x1 β‰₯ x2) f) Filter.limsInf_le_of_le._auto_1 β†’ (βˆ€ (b : Ξ±), (βˆ€αΆ  (n : Ξ±) in f, b ≀ n) β†’ b ≀ a) β†’ f.limsInf ≀ a
Batteries.CodeAction.getExplicitArgs._unsafe_rec
Batteries.CodeAction.Misc
Lean.Expr β†’ Array Lean.Name β†’ Array Lean.Name
PosNum.ldiff._sparseCasesOn_1
Mathlib.Data.Num.Bitwise
{motive : PosNum β†’ Sort u} β†’ (t : PosNum) β†’ ((a : PosNum) β†’ motive a.bit0) β†’ (Nat.hasNotBit 4 t.ctorIdx β†’ motive t) β†’ motive t
_private.Init.Data.SInt.Lemmas.0.Int16.le_total._simp_1_1
Init.Data.SInt.Lemmas
βˆ€ {x y : Int16}, (x ≀ y) = (x.toInt ≀ y.toInt)
RestrictScalars.addEquiv
Mathlib.Algebra.Algebra.RestrictScalars
(R : Type u_1) β†’ (S : Type u_2) β†’ (M : Type u_3) β†’ [inst : AddCommMonoid M] β†’ RestrictScalars R S M ≃+ M
MeasureTheory.Measure.count_ne_zero
Mathlib.MeasureTheory.Measure.Count
βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] {s : Set Ξ±}, s.Nonempty β†’ MeasureTheory.Measure.count s β‰  0
_private.Mathlib.GroupTheory.Coxeter.Inversion.0.CoxeterSystem.getElem_succ_leftInvSeq_alternatingWord._simp_1_2
Mathlib.GroupTheory.Coxeter.Inversion
βˆ€ {G : Type u_1} [inst : Mul G] [IsLeftCancelMul G] (a : G) {b c : G}, (a * b = a * c) = (b = c)
Prod.isRightRegular_mk._simp_4
Mathlib.Algebra.Regular.Prod
βˆ€ {R : Type u_2} {S : Type u_3} [inst : Add R] [inst_1 : Add S] {a : R} {b : S}, IsAddRightRegular (a, b) = (IsAddRightRegular a ∧ IsAddRightRegular b)
ENNReal.eq_top_of_forall_nnreal_le
Mathlib.Data.ENNReal.Inv
βˆ€ {x : ENNReal}, (βˆ€ (r : NNReal), ↑r ≀ x) β†’ x = ⊀
Cycle.formPerm_eq_self_of_notMem
Mathlib.GroupTheory.Perm.Cycle.Concrete
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] (s : Cycle Ξ±) (h : s.Nodup), βˆ€ x βˆ‰ s, (s.formPerm h) x = x
Lean.Elab.Tactic.Do.ProofMode.addLocalVarInfo
Lean.Elab.Tactic.Do.ProofMode.MGoal
Lean.Syntax β†’ Lean.LocalContext β†’ Lean.Expr β†’ Option Lean.Expr β†’ optParam Bool false β†’ Lean.MetaM Unit
InnerProductSpace.Core.norm_eq_sqrt_re_inner
Mathlib.Analysis.InnerProductSpace.Defs
βˆ€ {π•œ : Type u_1} {F : Type u_3} [inst : RCLike π•œ] [inst_1 : AddCommGroup F] [inst_2 : Module π•œ F] [c : PreInnerProductSpace.Core π•œ F] (x : F), β€–xβ€– = √(RCLike.re (inner π•œ x x))
CategoryTheory.Sheaf.over
Mathlib.CategoryTheory.Sites.Over
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {J : CategoryTheory.GrothendieckTopology C} β†’ {A : Type u'} β†’ [inst_1 : CategoryTheory.Category.{v', u'} A] β†’ CategoryTheory.Sheaf J A β†’ (X : C) β†’ CategoryTheory.Sheaf (J.over X) A
_private.Mathlib.Algebra.Homology.Embedding.Connect.0.CochainComplex.ConnectData.d_comp_d._proof_1_6
Mathlib.Algebra.Homology.Embedding.Connect
βˆ€ (m p : β„€), m + 1 = p β†’ βˆ€ (n : β„•), Int.negSucc (n + 1 + 1) + 1 = m β†’ m = Int.negSucc (n + 1)
IsCoprime.neg_neg
Mathlib.RingTheory.Coprime.Basic
βˆ€ {R : Type u} [inst : CommRing R] {x y : R}, IsCoprime x y β†’ IsCoprime (-x) (-y)
_private.Init.Data.BitVec.Lemmas.0.BitVec.toInt_mul_of_not_smulOverflow._proof_1_7
Init.Data.BitVec.Lemmas
βˆ€ (w : β„•) {x y : BitVec (w + 1)}, x.toInt * y.toInt < 2 ^ w ∧ -2 ^ w ≀ x.toInt * y.toInt β†’ Β¬x.toInt * y.toInt < (2 ^ (w + 1) + 1) / 2 β†’ False
VectorFourier.fourierIntegral.eq_1
Mathlib.Analysis.Fourier.FourierTransform
βˆ€ {π•œ : Type u_1} [inst : CommRing π•œ] {V : Type u_2} [inst_1 : AddCommGroup V] [inst_2 : Module π•œ V] [inst_3 : MeasurableSpace V] {W : Type u_3} [inst_4 : AddCommGroup W] [inst_5 : Module π•œ W] {E : Type u_4} [inst_6 : NormedAddCommGroup E] [inst_7 : NormedSpace β„‚ E] (e : AddChar π•œ Circle) (ΞΌ : MeasureTheory.Measure V) (L : V β†’β‚—[π•œ] W β†’β‚—[π•œ] π•œ) (f : V β†’ E) (w : W), VectorFourier.fourierIntegral e ΞΌ L f w = ∫ (v : V), e (-(L v) w) β€’ f v βˆ‚ΞΌ
CategoryTheory.MorphismProperty.LeftFraction.Localization.Qinv
Mathlib.CategoryTheory.Localization.CalculusOfFractions
{C : Type u_1} β†’ [inst : CategoryTheory.Category.{v_1, u_1} C] β†’ {W : CategoryTheory.MorphismProperty C} β†’ [inst_1 : W.HasLeftCalculusOfFractions] β†’ {X Y : C} β†’ (s : X ⟢ Y) β†’ W s β†’ ((CategoryTheory.MorphismProperty.LeftFraction.Localization.Q W).obj Y ⟢ (CategoryTheory.MorphismProperty.LeftFraction.Localization.Q W).obj X)
_private.Lean.Elab.MutualDef.0.Lean.Elab.Term.MutualClosure.mkLetRecClosureFor.match_3
Lean.Elab.MutualDef
(motive : Option (Lean.Name Γ— Lean.BinderInfo) β†’ Sort u_1) β†’ (x : Option (Lean.Name Γ— Lean.BinderInfo)) β†’ ((userName : Lean.Name) β†’ (bi : Lean.BinderInfo) β†’ motive (some (userName, bi))) β†’ ((x : Option (Lean.Name Γ— Lean.BinderInfo)) β†’ motive x) β†’ motive x
String.Slice.SplitIterator.instIteratorLoopIdOfMonad
Init.Data.String.Slice
{ρ : Type} β†’ {Οƒ : String.Slice β†’ Type} β†’ [inst : (s : String.Slice) β†’ Std.Iterators.Iterator (Οƒ s) Id (String.Slice.Pattern.SearchStep s)] β†’ {pat : ρ} β†’ [inst_1 : String.Slice.Pattern.ToForwardSearcher pat Οƒ] β†’ {n : Type u_1 β†’ Type u_2} β†’ {s : String.Slice} β†’ [Monad n] β†’ Std.Iterators.IteratorLoop (String.Slice.SplitIterator pat s) Id n
_private.Lean.Parser.Tactic.Doc.0.Lean.Parser.Tactic.Doc.isTactic._sparseCasesOn_1
Lean.Parser.Tactic.Doc
{Ξ± : Type u} β†’ {motive : Option Ξ± β†’ Sort u_1} β†’ (t : Option Ξ±) β†’ ((val : Ξ±) β†’ motive (some val)) β†’ (Nat.hasNotBit 2 t.ctorIdx β†’ motive t) β†’ motive t
PredSubOrder.mk._flat_ctor
Mathlib.Algebra.Order.SuccPred
{Ξ± : Type u_1} β†’ [inst : Preorder Ξ±] β†’ [inst_1 : Sub Ξ±] β†’ [inst_2 : One Ξ±] β†’ (pred : Ξ± β†’ Ξ±) β†’ (βˆ€ (a : Ξ±), pred a ≀ a) β†’ (βˆ€ {a : Ξ±}, a ≀ pred a β†’ IsMin a) β†’ (βˆ€ {a b : Ξ±}, a < b β†’ a ≀ pred b) β†’ (βˆ€ (x : Ξ±), pred x = x - 1) β†’ PredSubOrder Ξ±
_private.Batteries.Data.BinomialHeap.Basic.0.Batteries.BinomialHeap.Imp.Heap.WF.merge'.match_1_5
Batteries.Data.BinomialHeap.Basic
βˆ€ {Ξ± : Type u_1} {le : Ξ± β†’ Ξ± β†’ Bool} {n : β„•} (r₁ : β„•) (t₁ tβ‚‚ : Batteries.BinomialHeap.Imp.Heap Ξ±) (a : Ξ±) (n_1 : Batteries.BinomialHeap.Imp.HeapNode Ξ±) (motive : Batteries.BinomialHeap.Imp.Heap.WF le n (Batteries.BinomialHeap.Imp.Heap.merge le t₁ (Batteries.BinomialHeap.Imp.Heap.cons r₁.succ a n_1 tβ‚‚)) ∧ ((t₁.rankGT n ↔ (Batteries.BinomialHeap.Imp.Heap.cons r₁.succ a n_1 tβ‚‚).rankGT n) β†’ (Batteries.BinomialHeap.Imp.Heap.merge le t₁ (Batteries.BinomialHeap.Imp.Heap.cons r₁.succ a n_1 tβ‚‚)).rankGT n) β†’ Prop) (x : Batteries.BinomialHeap.Imp.Heap.WF le n (Batteries.BinomialHeap.Imp.Heap.merge le t₁ (Batteries.BinomialHeap.Imp.Heap.cons r₁.succ a n_1 tβ‚‚)) ∧ ((t₁.rankGT n ↔ (Batteries.BinomialHeap.Imp.Heap.cons r₁.succ a n_1 tβ‚‚).rankGT n) β†’ (Batteries.BinomialHeap.Imp.Heap.merge le t₁ (Batteries.BinomialHeap.Imp.Heap.cons r₁.succ a n_1 tβ‚‚)).rankGT n)), (βˆ€ (ih₁ : Batteries.BinomialHeap.Imp.Heap.WF le n (Batteries.BinomialHeap.Imp.Heap.merge le t₁ (Batteries.BinomialHeap.Imp.Heap.cons r₁.succ a n_1 tβ‚‚))) (ihβ‚‚ : (t₁.rankGT n ↔ (Batteries.BinomialHeap.Imp.Heap.cons r₁.succ a n_1 tβ‚‚).rankGT n) β†’ (Batteries.BinomialHeap.Imp.Heap.merge le t₁ (Batteries.BinomialHeap.Imp.Heap.cons r₁.succ a n_1 tβ‚‚)).rankGT n), motive β‹―) β†’ motive x
Std.LawfulOrderMax.rec
Init.Data.Order.Classes
{Ξ± : Type u} β†’ [inst : Max Ξ±] β†’ [inst_1 : LE Ξ±] β†’ {motive : Std.LawfulOrderMax Ξ± β†’ Sort u_1} β†’ ([toMaxEqOr : Std.MaxEqOr Ξ±] β†’ [toLawfulOrderSup : Std.LawfulOrderSup Ξ±] β†’ motive β‹―) β†’ (t : Std.LawfulOrderMax Ξ±) β†’ motive t
Ideal.prod_span_singleton
Mathlib.RingTheory.Ideal.Operations
βˆ€ {R : Type u} [inst : CommSemiring R] {ΞΉ : Type u_2} (s : Finset ΞΉ) (I : ΞΉ β†’ R), ∏ i ∈ s, Ideal.span {I i} = Ideal.span {∏ i ∈ s, I i}
_private.Mathlib.Data.List.OfFn.0.List.find?_ofFn_eq_some._proof_1_5
Mathlib.Data.List.OfFn
βˆ€ {n : β„•} (i : Fin n), βˆ€ j < ↑i, j < n
Lean.ModuleDoc.casesOn
Lean.DocString.Extension
{motive : Lean.ModuleDoc β†’ Sort u} β†’ (t : Lean.ModuleDoc) β†’ ((doc : String) β†’ (declarationRange : Lean.DeclarationRange) β†’ motive { doc := doc, declarationRange := declarationRange }) β†’ motive t
Polynomial.toFinsuppIsoLinear
Mathlib.Algebra.Polynomial.Basic
(R : Type u) β†’ [inst : Semiring R] β†’ Polynomial R ≃ₗ[R] AddMonoidAlgebra R β„•
Nat.sqrt.iter._unsafe_rec
Batteries.Data.Nat.Basic
β„• β†’ β„• β†’ β„•
Real.sin_sq_pi_over_two_pow
Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
βˆ€ (n : β„•), Real.sin (Real.pi / 2 ^ (n + 1)) ^ 2 = 1 - (Real.sqrtTwoAddSeries 0 n / 2) ^ 2
_private.Mathlib.Topology.Homotopy.HSpaces.0.HSpace.prod._simp_2
Mathlib.Topology.Homotopy.HSpaces
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {a₁ aβ‚‚ : Ξ±} {b₁ bβ‚‚ : Ξ²}, ((a₁, b₁) = (aβ‚‚, bβ‚‚)) = (a₁ = aβ‚‚ ∧ b₁ = bβ‚‚)
Topology.isEmbedding_sigmoid
Mathlib.Analysis.SpecialFunctions.Sigmoid
Topology.IsEmbedding unitInterval.sigmoid
ContinuousOrderHom.instContinuousOrderHomClass
Mathlib.Topology.Order.Hom.Basic
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : TopologicalSpace Ξ±] [inst_1 : Preorder Ξ±] [inst_2 : TopologicalSpace Ξ²] [inst_3 : Preorder Ξ²], ContinuousOrderHomClass (Ξ± β†’Co Ξ²) Ξ± Ξ²
differentiableAt_natCast
Mathlib.Analysis.Calculus.FDeriv.Const
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] [inst_5 : NatCast F] (n : β„•) (x : E), DifferentiableAt π•œ (↑n) x
Std.DTreeMap.Internal.Impl.Const.maxEntry.match_1
Std.Data.DTreeMap.Internal.Queries
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ (motive : (x : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) β†’ x.isEmpty = false β†’ Sort u_3) β†’ (x : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) β†’ (x_1 : x.isEmpty = false) β†’ ((size : β„•) β†’ (k : Ξ±) β†’ (v : Ξ²) β†’ (l : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) β†’ (x : (Std.DTreeMap.Internal.Impl.inner size k v l Std.DTreeMap.Internal.Impl.leaf).isEmpty = false) β†’ motive (Std.DTreeMap.Internal.Impl.inner size k v l Std.DTreeMap.Internal.Impl.leaf) x) β†’ ((size : β„•) β†’ (k : Ξ±) β†’ (v : Ξ²) β†’ (l l_1 : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) β†’ (size_1 : β„•) β†’ (k_1 : Ξ±) β†’ (v_1 : Ξ²) β†’ (l_2 r : Std.DTreeMap.Internal.Impl Ξ± fun x => Ξ²) β†’ (h : l_1 = Std.DTreeMap.Internal.Impl.inner size_1 k_1 v_1 l_2 r) β†’ (h_2 : (Std.DTreeMap.Internal.Impl.inner size k v l (namedPattern l_1 (Std.DTreeMap.Internal.Impl.inner size_1 k_1 v_1 l_2 r) h)).isEmpty = false) β†’ motive (Std.DTreeMap.Internal.Impl.inner size k v l (namedPattern l_1 (Std.DTreeMap.Internal.Impl.inner size_1 k_1 v_1 l_2 r) h)) h_2) β†’ motive x x_1
intervalIntegral.integral_finset_sum
Mathlib.MeasureTheory.Integral.IntervalIntegral.Basic
βˆ€ {E : Type u_5} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] {a b : ℝ} {ΞΌ : MeasureTheory.Measure ℝ} {ΞΉ : Type u_8} {s : Finset ΞΉ} {f : ΞΉ β†’ ℝ β†’ E}, (βˆ€ i ∈ s, IntervalIntegrable (f i) ΞΌ a b) β†’ ∫ (x : ℝ) in a..b, βˆ‘ i ∈ s, f i x βˆ‚ΞΌ = βˆ‘ i ∈ s, ∫ (x : ℝ) in a..b, f i x βˆ‚ΞΌ
ContinuousAffineEquiv.prodAssoc_toAffineEquiv
Mathlib.Topology.Algebra.ContinuousAffineEquiv
βˆ€ (k : Type u_1) (P₁ : Type u_2) (Pβ‚‚ : Type u_3) (P₃ : Type u_4) {V₁ : Type u_6} {Vβ‚‚ : Type u_7} {V₃ : Type u_8} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : Module k V₁] [inst_3 : AddTorsor V₁ P₁] [inst_4 : TopologicalSpace P₁] [inst_5 : AddCommGroup Vβ‚‚] [inst_6 : Module k Vβ‚‚] [inst_7 : AddTorsor Vβ‚‚ Pβ‚‚] [inst_8 : TopologicalSpace Pβ‚‚] [inst_9 : AddCommGroup V₃] [inst_10 : Module k V₃] [inst_11 : AddTorsor V₃ P₃] [inst_12 : TopologicalSpace P₃], ↑(ContinuousAffineEquiv.prodAssoc k P₁ Pβ‚‚ P₃) = AffineEquiv.prodAssoc k P₁ Pβ‚‚ P₃
CommGrpCat.coyoneda.eq_1
Mathlib.Algebra.Category.Grp.Yoneda
CommGrpCat.coyoneda = { obj := fun M => { obj := fun N => CommGrpCat.of (↑(Opposite.unop M) β†’* ↑N), map := fun {X Y} f => CommGrpCat.ofHom (MonoidHom.compHom (CommGrpCat.Hom.hom f)), map_id := β‹―, map_comp := β‹― }, map := fun {X Y} f => { app := fun N => CommGrpCat.ofHom (CommGrpCat.Hom.hom f.unop).compHom', naturality := β‹― }, map_id := CommGrpCat.coyoneda._proof_4, map_comp := @CommGrpCat.coyoneda._proof_5 }
StrictAnti.wellFoundedLT
Mathlib.Order.Monotone.Basic
βˆ€ {Ξ± : Type u} {Ξ² : Type v} [inst : Preorder Ξ±] [inst_1 : Preorder Ξ²] {f : Ξ± β†’ Ξ²} [WellFoundedGT Ξ²], StrictAnti f β†’ WellFoundedLT Ξ±
Filter.tendsto_atTop_mono'
Mathlib.Order.Filter.AtTopBot.Tendsto
βˆ€ {Ξ± : Type u_3} {Ξ² : Type u_4} [inst : Preorder Ξ²] (l : Filter Ξ±) ⦃f₁ fβ‚‚ : Ξ± β†’ β⦄, f₁ ≀ᢠ[l] fβ‚‚ β†’ Filter.Tendsto f₁ l Filter.atTop β†’ Filter.Tendsto fβ‚‚ l Filter.atTop
segment_eq_image'
Mathlib.Analysis.Convex.Segment
βˆ€ (π•œ : Type u_1) {E : Type u_2} [inst : Ring π•œ] [inst_1 : PartialOrder π•œ] [AddRightMono π•œ] [inst_3 : AddCommGroup E] [inst_4 : Module π•œ E] (x y : E), segment π•œ x y = (fun ΞΈ => x + ΞΈ β€’ (y - x)) '' Set.Icc 0 1
Bool.le_true._simp_1
Init.Data.Bool
βˆ€ (x : Bool), (x ≀ true) = True
Finset.prod_filter
Mathlib.Algebra.BigOperators.Group.Finset.Basic
βˆ€ {ΞΉ : Type u_1} {M : Type u_4} {s : Finset ΞΉ} [inst : CommMonoid M] (p : ΞΉ β†’ Prop) [inst_1 : DecidablePred p] (f : ΞΉ β†’ M), ∏ a ∈ s with p a, f a = ∏ a ∈ s, if p a then f a else 1
_private.Lean.Elab.DeclModifiers.0.Lean.Elab.Modifiers.isNoncomputable.match_1
Lean.Elab.DeclModifiers
(motive : Lean.Elab.ComputeKind β†’ Sort u_1) β†’ (x : Lean.Elab.ComputeKind) β†’ (Unit β†’ motive Lean.Elab.ComputeKind.noncomputable) β†’ ((x : Lean.Elab.ComputeKind) β†’ motive x) β†’ motive x
Multiset.zero_disjoint
Mathlib.Data.Multiset.UnionInter
βˆ€ {Ξ± : Type u_1} (l : Multiset Ξ±), Disjoint 0 l
CategoryTheory.CommGrpObj
Mathlib.CategoryTheory.Monoidal.Cartesian.CommGrp_
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ [inst_1 : CategoryTheory.CartesianMonoidalCategory C] β†’ [CategoryTheory.BraidedCategory C] β†’ C β†’ Type v
_private.Lean.Elab.Tactic.Grind.BuiltinTactic.0.Lean.Elab.Tactic.Grind.evalFail._regBuiltin._private.Lean.Elab.Tactic.Grind.BuiltinTactic.0.Lean.Elab.Tactic.Grind.evalFail_1
Lean.Elab.Tactic.Grind.BuiltinTactic
IO Unit
Fin.univ_image_get
Mathlib.Data.Fintype.Basic
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] (l : List Ξ±), Finset.image l.get Finset.univ = l.toFinset
Std.DTreeMap.instUnion
Std.Data.DTreeMap.Basic
{Ξ± : Type u} β†’ {Ξ² : Ξ± β†’ Type v} β†’ {cmp : Ξ± β†’ Ξ± β†’ Ordering} β†’ Union (Std.DTreeMap Ξ± Ξ² cmp)
Polynomial.UniversalCoprimeFactorizationRing.isCoprime_factor₁_factorβ‚‚
Mathlib.RingTheory.Polynomial.UniversalFactorizationRing
βˆ€ {R : Type u_1} [inst : CommRing R] {n : β„•} (m k : β„•) (hn : n = m + k) (p : Polynomial.MonicDegreeEq R n), IsCoprime ↑(Polynomial.UniversalCoprimeFactorizationRing.factor₁ m k hn p) ↑(Polynomial.UniversalCoprimeFactorizationRing.factorβ‚‚ m k hn p)
ComplexShape.notMem_range_embeddingUpIntLE_iff
Mathlib.Algebra.Homology.Embedding.Basic
βˆ€ (p n : β„€), (βˆ€ (i : β„•), (ComplexShape.embeddingUpIntLE p).f i β‰  n) ↔ p < n
PMF.filter_apply_eq_zero_iff
Mathlib.Probability.ProbabilityMassFunction.Constructions
βˆ€ {Ξ± : Type u_1} {p : PMF Ξ±} {s : Set Ξ±} (h : βˆƒ a ∈ s, a ∈ p.support) (a : Ξ±), (p.filter s h) a = 0 ↔ a βˆ‰ s ∨ a βˆ‰ p.support
CliffordAlgebra.EvenHom._sizeOf_1
Mathlib.LinearAlgebra.CliffordAlgebra.Even
{R : Type u_1} β†’ {M : Type u_2} β†’ {inst : CommRing R} β†’ {inst_1 : AddCommGroup M} β†’ {inst_2 : Module R M} β†’ {Q : QuadraticForm R M} β†’ {A : Type u_3} β†’ {inst_3 : Ring A} β†’ {inst_4 : Algebra R A} β†’ [SizeOf R] β†’ [SizeOf M] β†’ [SizeOf A] β†’ CliffordAlgebra.EvenHom Q A β†’ β„•
Finsupp.lcoeFun._proof_1
Mathlib.LinearAlgebra.Finsupp.Pi
βˆ€ {Ξ± : Type u_1} {M : Type u_2} [inst : AddCommMonoid M] (x y : Ξ± β†’β‚€ M), ⇑(x + y) = ⇑x + ⇑y
_private.Mathlib.Order.Heyting.Hom.0.OrderIsoClass.toHeytingHomClass._simp_1
Mathlib.Order.Heyting.Hom
βˆ€ {F : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : LE Ξ±] [inst_1 : LE Ξ²] [inst_2 : EquivLike F Ξ± Ξ²] [OrderIsoClass F Ξ± Ξ²] (f : F) {a : Ξ±} {b : Ξ²}, (b ≀ f a) = (EquivLike.inv f b ≀ a)
CategoryTheory.PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite
Mathlib.CategoryTheory.Galois.Action
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{v_1, u_1} C] (F : CategoryTheory.Functor C FintypeCat) [inst_1 : CategoryTheory.GaloisCategory C] [CategoryTheory.PreGaloisCategory.FiberFunctor F] (G : Type u_2) [inst_3 : Group G] [Finite G], CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.SingleObj G) (CategoryTheory.PreGaloisCategory.functorToAction F)
CStarMatrix.toCLM_apply_single_apply
Mathlib.Analysis.CStarAlgebra.CStarMatrix
βˆ€ {m : Type u_1} {n : Type u_2} {A : Type u_5} [inst : Fintype m] [inst_1 : NonUnitalCStarAlgebra A] [inst_2 : PartialOrder A] [inst_3 : StarOrderedRing A] [inst_4 : DecidableEq m] {M : CStarMatrix m n A} {i : m} {j : n} (a : A), (CStarMatrix.toCLM M) ((WithCStarModule.equiv A (m β†’ A)).symm (Pi.single i a)) j = a * M i j
_private.Lean.MetavarContext.0.Lean.DependsOn.dep.visit
Lean.MetavarContext
(Lean.FVarId β†’ Bool) β†’ (Lean.MVarId β†’ Bool) β†’ Lean.Expr β†’ Lean.DependsOn.M✝ Bool
ULift.instLinearOrder._proof_2
Mathlib.Order.Lattice
βˆ€ {Ξ± : Type u_2} [inst : LinearOrder Ξ±] {x y : ULift.{u_1, u_2} Ξ±}, x.down < y.down ↔ x < y
Metric.closedBall_subset_closedBall
Mathlib.Topology.MetricSpace.Pseudo.Defs
βˆ€ {Ξ± : Type u} [inst : PseudoMetricSpace Ξ±] {x : Ξ±} {Ρ₁ Ξ΅β‚‚ : ℝ}, Ρ₁ ≀ Ξ΅β‚‚ β†’ Metric.closedBall x Ρ₁ βŠ† Metric.closedBall x Ξ΅β‚‚
Array.extract_size_left
Init.Data.Array.Extract
βˆ€ {Ξ± : Type u_1} {j : β„•} {as : Array Ξ±}, as.extract as.size j = #[]
LinearEquiv.curry._proof_2
Mathlib.Algebra.Module.Equiv.Basic
βˆ€ (R : Type u_4) (M : Type u_3) [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] (V : Type u_1) (Vβ‚‚ : Type u_2) (x : R) (x_1 : V Γ— Vβ‚‚ β†’ M), (Equiv.curry V Vβ‚‚ M).toFun (x β€’ x_1) = (Equiv.curry V Vβ‚‚ M).toFun (x β€’ x_1)
_private.Mathlib.Topology.Algebra.Valued.LocallyCompact.0.Valued.integer.mem_iff._simp_1_2
Mathlib.Topology.Algebra.Valued.LocallyCompact
βˆ€ {r₁ rβ‚‚ : NNReal}, (r₁ ≀ rβ‚‚) = (↑r₁ ≀ ↑rβ‚‚)
DirichletCharacter.LFunction_ne_zero_of_one_le_re
Mathlib.NumberTheory.LSeries.Nonvanishing
βˆ€ {N : β„•} (Ο‡ : DirichletCharacter β„‚ N) [inst : NeZero N] ⦃s : ℂ⦄, Ο‡ β‰  1 ∨ s β‰  1 β†’ 1 ≀ s.re β†’ DirichletCharacter.LFunction Ο‡ s β‰  0
_private.Lean.Environment.0.Lean.ImportedModule.mk.injEq
Lean.Environment
βˆ€ (toEffectiveImport : Lean.EffectiveImport) (parts : Array (Lean.ModuleData Γ— Lean.CompactedRegion)) (irData? : Option (Lean.ModuleData Γ— Lean.CompactedRegion)) (needsData needsIRTrans : Bool) (toEffectiveImport_1 : Lean.EffectiveImport) (parts_1 : Array (Lean.ModuleData Γ— Lean.CompactedRegion)) (irData?_1 : Option (Lean.ModuleData Γ— Lean.CompactedRegion)) (needsData_1 needsIRTrans_1 : Bool), ({ toEffectiveImport := toEffectiveImport, parts := parts, irData? := irData?, needsData := needsData, needsIRTrans := needsIRTrans } = { toEffectiveImport := toEffectiveImport_1, parts := parts_1, irData? := irData?_1, needsData := needsData_1, needsIRTrans := needsIRTrans_1 }) = (toEffectiveImport = toEffectiveImport_1 ∧ parts = parts_1 ∧ irData? = irData?_1 ∧ needsData = needsData_1 ∧ needsIRTrans = needsIRTrans_1)
Std.Rxo.Iterator.mk.sizeOf_spec
Init.Data.Range.Polymorphic.RangeIterator
βˆ€ {Ξ± : Type u} [inst : SizeOf Ξ±] (next : Option Ξ±) (upperBound : Ξ±), sizeOf { next := next, upperBound := upperBound } = 1 + sizeOf next + sizeOf upperBound
normalClosure_of_stabilizer_eq_top
Mathlib.GroupTheory.GroupAction.Jordan
βˆ€ {G : Type u_1} {Ξ± : Type u_2} [inst : Group G] [inst_1 : MulAction G Ξ±], 2 < ENat.card Ξ± β†’ MulAction.IsMultiplyPretransitive G Ξ± 2 β†’ βˆ€ {a : Ξ±}, Subgroup.normalClosure ↑(MulAction.stabilizer G a) = ⊀
_private.Aesop.Util.Tactic.Ext.0.Aesop.straightLineExt.go._sparseCasesOn_5
Aesop.Util.Tactic.Ext
{Ξ± : Type u} β†’ {motive : Option Ξ± β†’ Sort u_1} β†’ (t : Option Ξ±) β†’ ((val : Ξ±) β†’ motive (some val)) β†’ (Nat.hasNotBit 2 t.ctorIdx β†’ motive t) β†’ motive t
_private.Mathlib.Analysis.SpecialFunctions.Integrals.Basic.0.integral_cos_sq._simp_1_3
Mathlib.Analysis.SpecialFunctions.Integrals.Basic
βˆ€ {Ξ± : Type u_2} [inst : Zero Ξ±] [inst_1 : OfNat Ξ± 4] [NeZero 4], (4 = 0) = False
Subgroup.exists_smul_eq
Mathlib.GroupTheory.SchurZassenhaus
βˆ€ {G : Type u_1} [inst : Group G] {H : Subgroup G} [inst_1 : IsMulCommutative β†₯H] [inst_2 : H.FiniteIndex] [inst_3 : H.Normal], (Nat.card β†₯H).Coprime H.index β†’ βˆ€ (Ξ± Ξ² : H.QuotientDiff), βˆƒ h, h β€’ Ξ± = Ξ²
Std.ExtTreeSet.getD_inter_of_not_mem_left
Std.Data.ExtTreeSet.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t₁ tβ‚‚ : Std.ExtTreeSet Ξ± cmp} [inst : Std.TransCmp cmp] {k fallback : Ξ±}, k βˆ‰ t₁ β†’ (t₁ ∩ tβ‚‚).getD k fallback = fallback
Field.Emb.Cardinal.strictMono_leastExt
Mathlib.FieldTheory.CardinalEmb
βˆ€ {F : Type u} {E : Type v} [inst : Field F] [inst_1 : Field E] [inst_2 : Algebra F E] [rank_inf : Fact (Cardinal.aleph0 ≀ Module.rank F E)] [inst_3 : Algebra.IsAlgebraic F E], StrictMono (Field.Emb.Cardinal.leastExt F E)
RelEmbedding._sizeOf_1
Mathlib.Order.RelIso.Basic
{Ξ± : Type u_5} β†’ {Ξ² : Type u_6} β†’ {r : Ξ± β†’ Ξ± β†’ Prop} β†’ {s : Ξ² β†’ Ξ² β†’ Prop} β†’ [SizeOf Ξ±] β†’ [SizeOf Ξ²] β†’ [(a a_1 : Ξ±) β†’ SizeOf (r a a_1)] β†’ [(a a_1 : Ξ²) β†’ SizeOf (s a a_1)] β†’ r β†ͺr s β†’ β„•
Configuration.ProjectivePlane.ctorIdx
Mathlib.Combinatorics.Configuration
{P : Type u_1} β†’ {L : Type u_2} β†’ {inst : Membership P L} β†’ Configuration.ProjectivePlane P L β†’ β„•
CategoryTheory.sum.inlCompAssociator_hom_app
Mathlib.CategoryTheory.Sums.Associator
βˆ€ (C : Type u₁) [inst : CategoryTheory.Category.{v₁, u₁} C] (D : Type uβ‚‚) [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] (E : Type u₃) [inst_2 : CategoryTheory.Category.{v₃, u₃} E] (X : C βŠ• D), (CategoryTheory.sum.inlCompAssociator C D E).hom.app X = CategoryTheory.CategoryStruct.id (((CategoryTheory.Sum.inl_ C (D βŠ• E)).sum' ((CategoryTheory.Sum.inl_ D E).comp (CategoryTheory.Sum.inr_ C (D βŠ• E)))).obj X)
Lean.Compiler.LCNF.SpecState.specInfo
Lean.Compiler.LCNF.SpecInfo
Lean.Compiler.LCNF.SpecState β†’ Lean.PHashMap Lean.Name (Array Lean.Compiler.LCNF.SpecParamInfo)
Std.Internal.IO.Process.totalMemory
Std.Internal.Async.Process
IO UInt64
Aesop.RuleBuilderInput._sizeOf_1
Aesop.Builder.Basic
Aesop.RuleBuilderInput β†’ β„•
Int8.le_of_lt
Init.Data.SInt.Lemmas
βˆ€ {a b : Int8}, a < b β†’ a ≀ b
CategoryTheory.Endofunctor.algebraPreadditive_homGroup_nsmul_f
Mathlib.CategoryTheory.Preadditive.EndoFunctor
βˆ€ (C : Type u₁) [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.Preadditive C] (F : CategoryTheory.Functor C C) [inst_2 : F.Additive] (A₁ Aβ‚‚ : CategoryTheory.Endofunctor.Algebra F) (n : β„•) (Ξ± : A₁ ⟢ Aβ‚‚), (n β€’ Ξ±).f = n β€’ Ξ±.f
IndexedPartition.piecewise_apply
Mathlib.Data.Setoid.Partition
βˆ€ {ΞΉ : Type u_1} {Ξ± : Type u_2} {s : ΞΉ β†’ Set Ξ±} (hs : IndexedPartition s) {Ξ² : Type u_3} {f : ΞΉ β†’ Ξ± β†’ Ξ²} (x : Ξ±), hs.piecewise f x = f (hs.index x) x
fourier_coe_apply'
Mathlib.Analysis.Fourier.AddCircle
βˆ€ {T : ℝ} {n : β„€} {x : ℝ}, ↑(AddCircle.toCircle (n β€’ ↑x)) = Complex.exp (2 * ↑Real.pi * Complex.I * ↑n * ↑x / ↑T)
_private.Mathlib.Data.Finset.Sum.0.Finset.disjSum_eq_empty._simp_1_1
Mathlib.Data.Finset.Sum
βˆ€ {Ξ± : Type u_1} {s₁ sβ‚‚ : Finset Ξ±}, (s₁ = sβ‚‚) = βˆ€ (a : Ξ±), a ∈ s₁ ↔ a ∈ sβ‚‚
bUnion_mem_nhdsSet
Mathlib.Topology.NhdsSet
βˆ€ {X : Type u_1} [inst : TopologicalSpace X] {s : Set X} {t : X β†’ Set X}, (βˆ€ x ∈ s, t x ∈ nhds x) β†’ ⋃ x ∈ s, t x ∈ nhdsSet s
three'_nsmul
Mathlib.Algebra.Group.Defs
βˆ€ {M : Type u_2} [inst : AddMonoid M] (a : M), 3 β€’ a = a + a + a
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.Basic
βˆ€ {R : Type u_1} [inst : CommSemiring R] {a b₃ c : R} (b₁ : R) (bβ‚‚ : β„•), a * b₃ = c β†’ a * (b₁ ^ bβ‚‚ * b₃) = b₁ ^ bβ‚‚ * c
CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjId_hom_app_snd_app
Mathlib.CategoryTheory.Limits.Shapes.Pullback.Categorical.Basic
βˆ€ {A : Type u₁} {B : Type uβ‚‚} {C : Type u₃} [inst : CategoryTheory.Category.{v₁, u₁} A] [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} B] [inst_2 : CategoryTheory.Category.{v₃, u₃} C] (F : CategoryTheory.Functor A B) (G : CategoryTheory.Functor C B) (X : Type uβ‚„) [inst_3 : CategoryTheory.Category.{vβ‚„, uβ‚„} X] (X_1 : CategoryTheory.Limits.CategoricalPullback.CatCommSqOver F G X) (X_2 : X), ((CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjId F G X).hom.app X_1).snd.app X_2 = CategoryTheory.CategoryStruct.id (X_1.snd.obj X_2)
Con.gi.eq_1
Mathlib.GroupTheory.Congruence.Defs
βˆ€ (M : Type u_1) [inst : Mul M], Con.gi M = { choice := fun r x => conGen r, gc := β‹―, le_l_u := β‹―, choice_eq := β‹― }
_private.Mathlib.Analysis.Normed.Unbundled.SmoothingSeminorm.0.ΞΌ_bddAbove
Mathlib.Analysis.Normed.Unbundled.SmoothingSeminorm
βˆ€ {R : Type u_1} [inst : CommRing R] (ΞΌ : RingSeminorm R), ΞΌ 1 ≀ 1 β†’ βˆ€ {s : β„• β†’ β„•}, (βˆ€ (n : β„•), s n ≀ n) β†’ βˆ€ (x : R) (ψ : β„• β†’ β„•), BddAbove (Set.range fun n => ΞΌ (x ^ s (ψ n)) ^ (1 / ↑(ψ n)))
_private.Mathlib.Geometry.Euclidean.Angle.Unoriented.Basic.0.InnerProductGeometry.cos_angle_mul_norm_mul_norm._simp_1_1
Mathlib.Geometry.Euclidean.Angle.Unoriented.Basic
βˆ€ {a b c : Prop}, (a ∨ b β†’ c) = ((a β†’ c) ∧ (b β†’ c))
AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal._proof_3
Mathlib.AlgebraicGeometry.IdealSheaf.Basic
βˆ€ {X : AlgebraicGeometry.Scheme} (Z : TopologicalSpace.Closeds β†₯X) (U : ↑X.affineOpens), βˆ€ x ∈ ↑U, x ∈ ↑Z ↔ x ∈ X.zeroLocus ↑(PrimeSpectrum.vanishingIdeal (⇑(CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.IsAffineOpen.fromSpec β‹―).base) ⁻¹' ↑Z))
_private.Mathlib.Data.Fin.Tuple.Reflection.0.FinVec.mkProdEqQ.makeRHS._sunfold
Mathlib.Data.Fin.Tuple.Reflection
{u : Lean.Level} β†’ {Ξ± : Q(Type u)} β†’ Q(CommMonoid Β«$Ξ±Β») β†’ (n : β„•) β†’ Q(Fin Β«$nΒ» β†’ Β«$Ξ±Β») β†’ Q(NeZero Β«$nΒ») β†’ β„• β†’ Lean.MetaM Q(Β«$Ξ±Β»)
List.partition.loop.eq_2
Init.Data.List.Lemmas
βˆ€ {Ξ± : Type u} (p : Ξ± β†’ Bool) (a : Ξ±) (as bs cs : List Ξ±), List.partition.loop p (a :: as) (bs, cs) = match p a with | true => List.partition.loop p as (a :: bs, cs) | false => List.partition.loop p as (bs, a :: cs)
Polynomial.hilbertPoly_mul_one_sub_succ
Mathlib.RingTheory.Polynomial.HilbertPoly
βˆ€ {F : Type u_1} [inst : Field F] [CharZero F] (p : Polynomial F) (d : β„•), (p * (1 - Polynomial.X)).hilbertPoly (d + 1) = p.hilbertPoly d
Mathlib.Tactic.Bicategory.Morβ‚‚OfExpr
Mathlib.Tactic.CategoryTheory.Bicategory.Datatypes
Lean.Expr β†’ Mathlib.Tactic.Bicategory.BicategoryM Mathlib.Tactic.BicategoryLike.Morβ‚‚
Computation.Mem
Mathlib.Data.Seq.Computation
{Ξ± : Type u} β†’ Computation Ξ± β†’ Ξ± β†’ Prop