name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Real.Wallis.W._proof_1
Mathlib.Analysis.Real.Pi.Wallis
(1 + 1).AtLeastTwo
CategoryTheory.GradedObject.mapBifunctorMapMapIso._proof_1
Mathlib.CategoryTheory.GradedObject.Bifunctor
βˆ€ {C₁ : Type u_5} {Cβ‚‚ : Type u_7} {C₃ : Type u_3} [inst : CategoryTheory.Category.{u_4, u_5} C₁] [inst_1 : CategoryTheory.Category.{u_6, u_7} Cβ‚‚] [inst_2 : CategoryTheory.Category.{u_2, u_3} C₃] (F : CategoryTheory.Functor C₁ (CategoryTheory.Functor Cβ‚‚ C₃)) {I : Type u_8} {J : Type u_9} {K : Type u_1} (p : I Γ— J β†’ K) {X₁ Xβ‚‚ : CategoryTheory.GradedObject I C₁} {Y₁ Yβ‚‚ : CategoryTheory.GradedObject J Cβ‚‚} [inst_3 : (((CategoryTheory.GradedObject.mapBifunctor F I J).obj X₁).obj Y₁).HasMap p] [inst_4 : (((CategoryTheory.GradedObject.mapBifunctor F I J).obj Xβ‚‚).obj Yβ‚‚).HasMap p] (e : X₁ β‰… Xβ‚‚) (e' : Y₁ β‰… Yβ‚‚), CategoryTheory.CategoryStruct.comp (CategoryTheory.GradedObject.mapBifunctorMapMap F p e.hom e'.hom) (CategoryTheory.GradedObject.mapBifunctorMapMap F p e.inv e'.inv) = CategoryTheory.CategoryStruct.id (CategoryTheory.GradedObject.mapBifunctorMapObj F p X₁ Y₁)
Set.one_subset
Mathlib.Algebra.Group.Pointwise.Set.Basic
βˆ€ {Ξ± : Type u_2} [inst : One Ξ±] {s : Set Ξ±}, 1 βŠ† s ↔ 1 ∈ s
Std.ExtDTreeMap.Const.ordered_keys_toList
Std.Data.ExtDTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {Ξ² : Type v} {t : Std.ExtDTreeMap Ξ± (fun x => Ξ²) cmp} [inst : Std.TransCmp cmp], List.Pairwise (fun a b => cmp a.1 b.1 = Ordering.lt) (Std.ExtDTreeMap.Const.toList t)
Batteries.Tactic.Instances._aux_Batteries_Tactic_Instances___elabRules_Batteries_Tactic_Instances_instancesCmd_1
Batteries.Tactic.Instances
Lean.Elab.Command.CommandElab
Lean.Elab.Tactic.Omega.Justification.combine.sizeOf_spec
Lean.Elab.Tactic.Omega.Core
βˆ€ {s t : Lean.Omega.Constraint} {c : Lean.Omega.Coeffs} (j : Lean.Elab.Tactic.Omega.Justification s c) (k : Lean.Elab.Tactic.Omega.Justification t c), sizeOf (j.combine k) = 1 + sizeOf s + sizeOf t + sizeOf c + sizeOf j + sizeOf k
Fin.cast_rev
Mathlib.Data.Fin.Rev
βˆ€ {n m : β„•} (i : Fin n) (h : n = m), Fin.cast h i.rev = (Fin.cast h i).rev
_private.Lean.Meta.Tactic.Grind.Arith.Cutsat.EqCnstr.0.Lean.Meta.Grind.Arith.Cutsat.instReprSupportedTermKind.repr.match_1
Lean.Meta.Tactic.Grind.Arith.Cutsat.EqCnstr
(motive : Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind✝ β†’ Sort u_1) β†’ (x : Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind✝¹) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.add✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.mul✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.num✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.div✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.mod✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.sub✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.pow✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.natAbs✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.toNat✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.natCast✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.neg✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.toInt✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.finVal✝) β†’ (Unit β†’ motive Lean.Meta.Grind.Arith.Cutsat.SupportedTermKind.finMk✝) β†’ motive x
FP.RMode.NE.sizeOf_spec
Mathlib.Data.FP.Basic
sizeOf FP.RMode.NE = 1
Std.DTreeMap.Raw.Const.getD_inter_of_not_mem_left
Std.Data.DTreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {Ξ² : Type v} {m₁ mβ‚‚ : Std.DTreeMap.Raw Ξ± (fun x => Ξ²) cmp} [Std.TransCmp cmp], m₁.WF β†’ mβ‚‚.WF β†’ βˆ€ {k : Ξ±} {fallback : Ξ²}, k βˆ‰ m₁ β†’ Std.DTreeMap.Raw.Const.getD (m₁ ∩ mβ‚‚) k fallback = fallback
CategoryTheory.Bicategory.instIsIsoHomLeftZigzagHom
Mathlib.CategoryTheory.Bicategory.Adjunction.Basic
βˆ€ {B : Type u} [inst : CategoryTheory.Bicategory B] {a b : B} {f : a ⟢ b} {g : b ⟢ a} (Ξ· : CategoryTheory.CategoryStruct.id a β‰… CategoryTheory.CategoryStruct.comp f g) (Ξ΅ : CategoryTheory.CategoryStruct.comp g f β‰… CategoryTheory.CategoryStruct.id b), CategoryTheory.IsIso (CategoryTheory.Bicategory.leftZigzag Ξ·.hom Ξ΅.hom)
Lean.LocalContext.findDecl?
Lean.LocalContext
{Ξ² : Type u_1} β†’ Lean.LocalContext β†’ (Lean.LocalDecl β†’ Option Ξ²) β†’ Option Ξ²
_private.Mathlib.CategoryTheory.Abelian.GrothendieckCategory.ModuleEmbedding.Opposite.0.CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.generator
Mathlib.CategoryTheory.Abelian.GrothendieckCategory.ModuleEmbedding.Opposite
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {D : Type v} β†’ [inst_1 : CategoryTheory.SmallCategory D] β†’ CategoryTheory.Functor D Cα΅’α΅– β†’ [inst_2 : CategoryTheory.Abelian C] β†’ [CategoryTheory.IsGrothendieckAbelian.{v, v, u} C] β†’ Cα΅’α΅–
Lists'.mem_of_subset'
Mathlib.SetTheory.Lists
βˆ€ {Ξ± : Type u_1} {a : Lists Ξ±} {l₁ lβ‚‚ : Lists' Ξ± true}, l₁ βŠ† lβ‚‚ β†’ a ∈ l₁.toList β†’ a ∈ lβ‚‚
_private.Mathlib.Data.Finset.NatDivisors.0.Nat.divisors_mul._simp_1_2
Mathlib.Data.Finset.NatDivisors
βˆ€ {n m : β„•}, (n ∈ m.divisors) = (n ∣ m ∧ m β‰  0)
ModP.preVal_eq_zero
Mathlib.RingTheory.Perfection
βˆ€ {K : Type u₁} [inst : Field K] {v : Valuation K NNReal} {O : Type uβ‚‚} [inst_1 : CommRing O] [inst_2 : Algebra O K], v.Integers O β†’ βˆ€ {p : β„•} {x : ModP O p}, ModP.preVal K v O p x = 0 ↔ x = 0
Finset.mem_coe
Mathlib.Data.Finset.Defs
βˆ€ {Ξ± : Type u_1} {a : Ξ±} {s : Finset Ξ±}, a ∈ ↑s ↔ a ∈ s
Lean.SubExpr.Pos.pushAppFn
Lean.SubExpr
Lean.SubExpr.Pos β†’ Lean.SubExpr.Pos
_private.Mathlib.LinearAlgebra.LinearIndependent.Lemmas.0.exists_of_linearIndepOn_of_finite_span._simp_1_13
Mathlib.LinearAlgebra.LinearIndependent.Lemmas
βˆ€ {Ξ± : Type u} {a b : Set Ξ±}, (a = b) = βˆ€ (x : Ξ±), x ∈ a ↔ x ∈ b
MonoidAlgebra.liftNCAlgHom._proof_1
Mathlib.Algebra.MonoidAlgebra.Basic
βˆ€ {k : Type u_3} {A : Type u_1} {B : Type u_2} [inst : CommSemiring k] [inst_1 : Semiring A] [inst_2 : Algebra k A] [inst_3 : Semiring B] [inst_4 : Algebra k B], RingHomClass (A →ₐ[k] B) A B
ContDiffWithinAt.congr_of_mem
Mathlib.Analysis.Calculus.ContDiff.Defs
βˆ€ {π•œ : Type u} [inst : NontriviallyNormedField π•œ] {E : Type uE} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type uF} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {s : Set E} {f f₁ : E β†’ F} {x : E} {n : WithTop β„•βˆž}, ContDiffWithinAt π•œ n f s x β†’ (βˆ€ y ∈ s, f₁ y = f y) β†’ x ∈ s β†’ ContDiffWithinAt π•œ n f₁ s x
isIntegral_algebraMap_iff
Mathlib.RingTheory.IntegralClosure.IsIntegral.Basic
βˆ€ {R : Type u_1} {A : Type u_2} {B : Type u_3} [inst : CommRing R] [inst_1 : CommRing A] [inst_2 : Ring B] [inst_3 : Algebra R A] [inst_4 : Algebra R B] [inst_5 : Algebra A B] [IsScalarTower R A B] {x : A}, Function.Injective ⇑(algebraMap A B) β†’ (IsIntegral R ((algebraMap A B) x) ↔ IsIntegral R x)
_private.Mathlib.MeasureTheory.Covering.BesicovitchVectorSpace.0.Besicovitch.SatelliteConfig.exists_normalized_aux3._simp_1_4
Mathlib.MeasureTheory.Covering.BesicovitchVectorSpace
βˆ€ {Ξ± : Type u_2} [inst : Zero Ξ±] [inst_1 : OfNat Ξ± 3] [NeZero 3], (3 = 0) = False
dimH_orthogonalProjection_le
Mathlib.Topology.MetricSpace.HausdorffDimension
βˆ€ {π•œ : Type u_6} {E : Type u_7} [inst : RCLike π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] (K : Submodule π•œ E) [inst_3 : K.HasOrthogonalProjection] (s : Set E), dimH (⇑K.orthogonalProjection '' s) ≀ dimH s
Nat.zero_shiftRight
Init.Data.Nat.Lemmas
βˆ€ (n : β„•), 0 >>> n = 0
Mathlib.Meta.Positivity.evalAddNorm
Mathlib.Analysis.Normed.Group.Basic
Mathlib.Meta.Positivity.PositivityExt
CategoryTheory.Limits.coconeEquivalenceOpConeOp._proof_1
Mathlib.CategoryTheory.Limits.Cones
βˆ€ {J : Type u_4} [inst : CategoryTheory.Category.{u_3, u_4} J] {C : Type u_2} [inst_1 : CategoryTheory.Category.{u_1, u_2} C] (F : CategoryTheory.Functor J C) {X Y : CategoryTheory.Limits.Cocone F} (f : X ⟢ Y) (j : Jα΅’α΅–), CategoryTheory.CategoryStruct.comp f.hom.op (X.op.Ο€.app j) = Y.op.Ο€.app j
CategoryTheory.Limits.IsZero.isoZero
Mathlib.CategoryTheory.Limits.Shapes.ZeroObjects
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ [inst_1 : CategoryTheory.Limits.HasZeroObject C] β†’ {X : C} β†’ CategoryTheory.Limits.IsZero X β†’ (X β‰… 0)
FreeMonoid.length_eq_four
Mathlib.Algebra.FreeMonoid.Basic
βˆ€ {Ξ± : Type u_1} {v : FreeMonoid Ξ±}, v.length = 4 ↔ βˆƒ a b c d, v = FreeMonoid.of a * FreeMonoid.of b * FreeMonoid.of c * FreeMonoid.of d
Lean.instBEqReducibilityStatus.beq
Lean.ReducibilityAttrs
Lean.ReducibilityStatus β†’ Lean.ReducibilityStatus β†’ Bool
Std.TreeMap.Raw.getElem!_ofList_of_contains_eq_false
Std.Data.TreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} [Std.TransCmp cmp] [inst : BEq Ξ±] [Std.LawfulBEqCmp cmp] {l : List (Ξ± Γ— Ξ²)} {k : Ξ±} [inst_2 : Inhabited Ξ²], (List.map Prod.fst l).contains k = false β†’ (Std.TreeMap.Raw.ofList l cmp)[k]! = default
SemidirectProduct.congr'_apply_left
Mathlib.GroupTheory.SemidirectProduct
βˆ€ {N₁ : Type u_4} {G₁ : Type u_5} {Nβ‚‚ : Type u_6} {Gβ‚‚ : Type u_7} [inst : Group N₁] [inst_1 : Group G₁] [inst_2 : Group Nβ‚‚] [inst_3 : Group Gβ‚‚] {φ₁ : G₁ β†’* MulAut N₁} (fn : N₁ ≃* Nβ‚‚) (fg : G₁ ≃* Gβ‚‚) (x : N₁ β‹Š[φ₁] G₁), ((SemidirectProduct.congr' fn fg) x).left = fn x.left
Booleanisation.instPartialOrder
Mathlib.Order.Booleanisation
{Ξ± : Type u_1} β†’ [GeneralizedBooleanAlgebra Ξ±] β†’ PartialOrder (Booleanisation Ξ±)
Subsemigroup.op_eq_top._simp_4
Mathlib.Algebra.Group.Subsemigroup.MulOpposite
βˆ€ {M : Type u_2} [inst : Add M] {S : AddSubsemigroup M}, (S.op = ⊀) = (S = ⊀)
Module.Relations.Solution.ofΟ€.congr_simp
Mathlib.Algebra.Module.Presentation.Basic
βˆ€ {A : Type u} [inst : Ring A] {relations : Module.Relations A} {M : Type v} [inst_1 : AddCommGroup M] [inst_2 : Module A M] (Ο€ Ο€_1 : (relations.G β†’β‚€ A) β†’β‚—[A] M) (e_Ο€ : Ο€ = Ο€_1) (hΟ€ : βˆ€ (r : relations.R), Ο€ (relations.relation r) = 0), Module.Relations.Solution.ofΟ€ Ο€ hΟ€ = Module.Relations.Solution.ofΟ€ Ο€_1 β‹―
right_le_midpoint
Mathlib.LinearAlgebra.AffineSpace.Ordered
βˆ€ {k : Type u_1} {E : Type u_2} [inst : Field k] [inst_1 : LinearOrder k] [inst_2 : IsStrictOrderedRing k] [inst_3 : AddCommGroup E] [inst_4 : PartialOrder E] [IsOrderedAddMonoid E] [inst_6 : Module k E] [IsStrictOrderedModule k E] [PosSMulReflectLE k E] {a b : E}, b ≀ midpoint k a b ↔ b ≀ a
CochainComplex.ΞΉMapBifunctor.congr_simp
Mathlib.Algebra.Homology.BifunctorShift
βˆ€ {C₁ : Type u_1} {Cβ‚‚ : Type u_2} {D : Type u_3} [inst : CategoryTheory.Category.{v_1, u_1} C₁] [inst_1 : CategoryTheory.Category.{v_2, u_2} Cβ‚‚] [inst_2 : CategoryTheory.Category.{v_3, u_3} D] [inst_3 : CategoryTheory.Limits.HasZeroMorphisms C₁] [inst_4 : CategoryTheory.Limits.HasZeroMorphisms Cβ‚‚] (K₁ : CochainComplex C₁ β„€) (Kβ‚‚ : CochainComplex Cβ‚‚ β„€) [inst_5 : CategoryTheory.Preadditive D] (F : CategoryTheory.Functor C₁ (CategoryTheory.Functor Cβ‚‚ D)) [inst_6 : F.PreservesZeroMorphisms] [inst_7 : βˆ€ (X₁ : C₁), (F.obj X₁).PreservesZeroMorphisms] [inst_8 : K₁.HasMapBifunctor Kβ‚‚ F] (n₁ nβ‚‚ n : β„€) (h : n₁ + nβ‚‚ = n), K₁.ΞΉMapBifunctor Kβ‚‚ F n₁ nβ‚‚ n h = K₁.ΞΉMapBifunctor Kβ‚‚ F n₁ nβ‚‚ n h
OneHomClass.toOneHom.eq_1
Mathlib.Algebra.Group.Hom.Defs
βˆ€ {M : Type u_4} {N : Type u_5} {F : Type u_9} [inst : One M] [inst_1 : One N] [inst_2 : FunLike F M N] [inst_3 : OneHomClass F M N] (f : F), ↑f = { toFun := ⇑f, map_one' := β‹― }
Lean.Meta.pp.showLetValues.threshold
Lean.Meta.PPGoal
Lean.Option β„•
BooleanAlgebra.lt._inherited_default
Mathlib.Order.BooleanAlgebra.Defs
{Ξ± : Type u} β†’ (Ξ± β†’ Ξ± β†’ Prop) β†’ Ξ± β†’ Ξ± β†’ Prop
Finset.map_comp_coe_apply
Mathlib.Data.Finset.Functor
βˆ€ {Ξ± Ξ² : Type u} (h : Ξ± β†’ Ξ²) (s : Multiset Ξ±), Finset.image h s.toFinset = (h <$> s).toFinset
Algebra.SubmersivePresentation.jacobian_isUnit
Mathlib.RingTheory.Extension.Presentation.Submersive
βˆ€ {R : Type u} {S : Type v} {ΞΉ : Type w} {Οƒ : Type t} [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : Algebra R S] [inst_3 : Finite Οƒ] (self : Algebra.SubmersivePresentation R S ΞΉ Οƒ), IsUnit self.jacobian
Pi.mulActionWithZero._proof_1
Mathlib.Algebra.GroupWithZero.Action.Pi
βˆ€ {I : Type u_1} {f : I β†’ Type u_2} (Ξ± : Type u_3) [inst : MonoidWithZero Ξ±] [inst_1 : (i : I) β†’ Zero (f i)] [inst_2 : (i : I) β†’ MulActionWithZero Ξ± (f i)] (a : Ξ±), a β€’ 0 = 0
ENNReal.holderTriple_coe_iff._simp_1
Mathlib.Data.Real.ConjExponents
βˆ€ {p q r : NNReal}, r β‰  0 β†’ (↑p).HolderTriple ↑q ↑r = p.HolderTriple q r
Pretrivialization.toPartialEquiv_injective
Mathlib.Topology.FiberBundle.Trivialization
βˆ€ {B : Type u_1} {F : Type u_2} {Z : Type u_4} [inst : TopologicalSpace B] [inst_1 : TopologicalSpace F] {proj : Z β†’ B} [Nonempty F], Function.Injective Pretrivialization.toPartialEquiv
_private.Init.Data.BitVec.Lemmas.0.BitVec.append_assoc'._proof_1
Init.Data.BitVec.Lemmas
βˆ€ {w₁ wβ‚‚ w₃ : β„•}, Β¬w₁ + wβ‚‚ + w₃ = w₁ + (wβ‚‚ + w₃) β†’ False
MulActionHom.congr_fun
Mathlib.GroupTheory.GroupAction.Hom
βˆ€ {M : Type u_2} {N : Type u_3} {Ο† : M β†’ N} {X : Type u_5} [inst : SMul M X] {Y : Type u_6} [inst_1 : SMul N Y] {f g : X β†’β‚‘[Ο†] Y}, f = g β†’ βˆ€ (x : X), f x = g x
Partition.mk.inj
Mathlib.Order.Partition.Basic
βˆ€ {Ξ± : Type u_1} {inst : CompleteLattice Ξ±} {s : Ξ±} {parts : Set Ξ±} {sSupIndep' : sSupIndep parts} {bot_notMem' : βŠ₯ βˆ‰ parts} {sSup_eq' : sSup parts = s} {parts_1 : Set Ξ±} {sSupIndep'_1 : sSupIndep parts_1} {bot_notMem'_1 : βŠ₯ βˆ‰ parts_1} {sSup_eq'_1 : sSup parts_1 = s}, { parts := parts, sSupIndep' := sSupIndep', bot_notMem' := bot_notMem', sSup_eq' := sSup_eq' } = { parts := parts_1, sSupIndep' := sSupIndep'_1, bot_notMem' := bot_notMem'_1, sSup_eq' := sSup_eq'_1 } β†’ parts = parts_1
ENNReal.eventuallyEq_of_toReal_eventuallyEq
Mathlib.Topology.Instances.ENNReal.Lemmas
βˆ€ {Ξ± : Type u_1} {l : Filter Ξ±} {f g : Ξ± β†’ ENNReal}, (βˆ€αΆ  (x : Ξ±) in l, f x β‰  ⊀) β†’ (βˆ€αΆ  (x : Ξ±) in l, g x β‰  ⊀) β†’ ((fun x => (f x).toReal) =αΆ [l] fun x => (g x).toReal) β†’ f =αΆ [l] g
PartialEquiv.symm
Mathlib.Logic.Equiv.PartialEquiv
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ PartialEquiv Ξ± Ξ² β†’ PartialEquiv Ξ² Ξ±
Std.ExtDHashMap.Const.contains_modify
Std.Data.ExtDHashMap.Lemmas
βˆ€ {Ξ± : Type u} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {Ξ² : Type v} {m : Std.ExtDHashMap Ξ± fun x => Ξ²} [inst : EquivBEq Ξ±] [inst_1 : LawfulHashable Ξ±] {k k' : Ξ±} {f : Ξ² β†’ Ξ²}, (Std.ExtDHashMap.Const.modify m k f).contains k' = m.contains k'
deriv_fun_finset_prod
Mathlib.Analysis.Calculus.Deriv.Mul
βˆ€ {π•œ : Type u} [inst : NontriviallyNormedField π•œ] {x : π•œ} {ΞΉ : Type u_2} [inst_1 : DecidableEq ΞΉ] {𝔸' : Type u_3} [inst_2 : NormedCommRing 𝔸'] [inst_3 : NormedAlgebra π•œ 𝔸'] {u : Finset ΞΉ} {f : ΞΉ β†’ π•œ β†’ 𝔸'}, (βˆ€ i ∈ u, DifferentiableAt π•œ (f i) x) β†’ deriv (fun x => ∏ i ∈ u, f i x) x = βˆ‘ i ∈ u, (∏ j ∈ u.erase i, f j x) β€’ deriv (f i) x
Wbtw.neg
Mathlib.Analysis.Convex.Between
βˆ€ {R : Type u_1} {V : Type u_2} [inst : Ring R] [inst_1 : PartialOrder R] [inst_2 : AddCommGroup V] [inst_3 : Module R V] {x y z : V}, Wbtw R x y z β†’ Wbtw R (-x) (-y) (-z)
Polynomial.map_modByMonic
Mathlib.Algebra.Polynomial.Div
βˆ€ {R : Type u} {S : Type v} [inst : Ring R] {p q : Polynomial R} [inst_1 : Ring S] (f : R β†’+* S), q.Monic β†’ Polynomial.map f (p %β‚˜ q) = Polynomial.map f p %β‚˜ Polynomial.map f q
_private.Mathlib.Tactic.Linter.FindDeprecations.0.Mathlib.Tactic.getDeprecatedInfo.match_1
Mathlib.Tactic.Linter.FindDeprecations
(motive : Option Lean.Name β†’ Sort u_1) β†’ (__do_lift : Option Lean.Name) β†’ ((mod : Lean.Name) β†’ motive (some mod)) β†’ ((x : Option Lean.Name) β†’ motive x) β†’ motive __do_lift
Lean.Elab.Tactic.Do.Context.simpCtx
Lean.Elab.Tactic.Do.VCGen.Basic
Lean.Elab.Tactic.Do.Context β†’ Lean.Meta.Simp.Context
RingCon.quotientKerEquivOfSurjective
Mathlib.RingTheory.Congruence.Hom
{M : Type u_1} β†’ {P : Type u_3} β†’ [inst : NonAssocSemiring M] β†’ [inst_1 : NonAssocSemiring P] β†’ (f : M β†’+* P) β†’ Function.Surjective ⇑f β†’ (RingCon.ker f).Quotient ≃+* P
InvariantBasisNumber.casesOn
Mathlib.LinearAlgebra.InvariantBasisNumber
{R : Type u} β†’ [inst : Semiring R] β†’ {motive : InvariantBasisNumber R β†’ Sort u_1} β†’ (t : InvariantBasisNumber R) β†’ ((eq_of_fin_equiv : βˆ€ {n m : β„•} (a : (Fin n β†’ R) ≃ₗ[R] Fin m β†’ R), n = m) β†’ motive β‹―) β†’ motive t
Pi.single_opβ‚‚
Mathlib.Algebra.Notation.Pi.Basic
βˆ€ {ΞΉ : Type u_1} {M : ΞΉ β†’ Type u_6} {N : ΞΉ β†’ Type u_7} {O : ΞΉ β†’ Type u_8} [inst : (i : ΞΉ) β†’ Zero (M i)] [inst_1 : (i : ΞΉ) β†’ Zero (N i)] [inst_2 : (i : ΞΉ) β†’ Zero (O i)] [inst_3 : DecidableEq ΞΉ] (op : (i : ΞΉ) β†’ M i β†’ N i β†’ O i), (βˆ€ (i : ΞΉ), op i 0 0 = 0) β†’ βˆ€ (i : ΞΉ) (x : M i) (y : N i), Pi.single i (op i x y) = fun j => op j (Pi.single i x j) (Pi.single i y j)
Std.DTreeMap.Internal.Impl.isEmpty_alter!
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {instOrd : Ord Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²} [Std.TransOrd Ξ±] [inst : Std.LawfulEqOrd Ξ±], t.WF β†’ βˆ€ {k : Ξ±} {f : Option (Ξ² k) β†’ Option (Ξ² k)}, (Std.DTreeMap.Internal.Impl.alter! k f t).isEmpty = ((t.isEmpty || t.size == 1 && Std.DTreeMap.Internal.Impl.contains k t) && (f (t.get? k)).isNone)
_private.Mathlib.Data.Multiset.Sym.0.Multiset.setOf_mem_sym2._simp_1_1
Mathlib.Data.Multiset.Sym
βˆ€ {Ξ± : Type u_1} {m : Multiset Ξ±} {a b : Ξ±}, (s(a, b) ∈ m.sym2) = (a ∈ m ∧ b ∈ m)
ENNReal.inv_three_add_inv_three
Mathlib.Data.ENNReal.Inv
3⁻¹ + 3⁻¹ + 3⁻¹ = 1
ULift.nonAssocSemiring._proof_2
Mathlib.Algebra.Ring.ULift
βˆ€ {R : Type u_2} [inst : NonAssocSemiring R] (a : ULift.{u_1, u_2} R), a * 1 = a
Aesop.Options'.generateScript
Aesop.Options.Internal
Aesop.Options' β†’ Bool
CategoryTheory.Preadditive.comp_sub_assoc
Mathlib.CategoryTheory.Preadditive.Basic
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C] {P Q R : C} (f : P ⟢ Q) (g g' : Q ⟢ R) {Z : C} (h : R ⟢ Z), CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp (g - g') h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp f g - CategoryTheory.CategoryStruct.comp f g') h
RingQuot.instSub
Mathlib.Algebra.RingQuot
{R : Type uR} β†’ [inst : Ring R] β†’ (r : R β†’ R β†’ Prop) β†’ Sub (RingQuot r)
_private.Mathlib.Algebra.Homology.Augment.0.ChainComplex.augment.match_3.eq_3
Mathlib.Algebra.Homology.Augment
βˆ€ (motive : β„• β†’ β„• β†’ Sort u_1) (x x_1 : β„•) (h_1 : Unit β†’ motive 1 0) (h_2 : (i j : β„•) β†’ motive i.succ j.succ) (h_3 : (x x_2 : β„•) β†’ motive x x_2), (x = 1 β†’ x_1 = 0 β†’ False) β†’ (βˆ€ (i j : β„•), x = i.succ β†’ x_1 = j.succ β†’ False) β†’ (match x, x_1 with | 1, 0 => h_1 () | i.succ, j.succ => h_2 i j | x, x_4 => h_3 x x_4) = h_3 x x_1
Lean.Order.instPartialOrderStateRefT'
Init.Internal.Order.Basic
{m : Type β†’ Type} β†’ {Ο‰ Οƒ Ξ± : Type} β†’ [inst : Lean.Order.PartialOrder (m Ξ±)] β†’ Lean.Order.PartialOrder (StateRefT' Ο‰ Οƒ m Ξ±)
getElem_congr_coll
Init.GetElem
βˆ€ {coll : Type u_1} {idx : Type u_2} {elem : Type u_3} {valid : coll β†’ idx β†’ Prop} [inst : GetElem coll idx elem valid] {c d : coll} {i : idx} {w : valid c i} (h : c = d), c[i] = d[i]
AlgebraicGeometry.RingedSpace.mem_top_basicOpen._simp_1
Mathlib.Geometry.RingedSpace.Basic
βˆ€ (X : AlgebraicGeometry.RingedSpace) (f : ↑(X.presheaf.obj (Opposite.op ⊀))) (x : ↑↑X.toPresheafedSpace), (x ∈ X.basicOpen f) = IsUnit ((CategoryTheory.ConcreteCategory.hom (X.presheaf.Ξ“germ x)) f)
QuadraticMap.IsOrtho.symm
Mathlib.LinearAlgebra.QuadraticForm.Basic
βˆ€ {R : Type u_3} {M : Type u_4} {N : Type u_5} [inst : CommSemiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] [inst_3 : AddCommMonoid N] [inst_4 : Module R N] {Q : QuadraticMap R M N} {x y : M}, Q.IsOrtho x y β†’ Q.IsOrtho y x
Lean.Elab.Term.Quotation.HeadCheck._sizeOf_1
Lean.Elab.Quotation
Lean.Elab.Term.Quotation.HeadCheck β†’ β„•
Mathlib.Meta.FunProp.LambdaTheorems.mk.noConfusion
Mathlib.Tactic.FunProp.Theorems
{P : Sort u} β†’ {theorems theorems' : Std.HashMap (Lean.Name Γ— Mathlib.Meta.FunProp.LambdaTheoremType) (Array Mathlib.Meta.FunProp.LambdaTheorem)} β†’ { theorems := theorems } = { theorems := theorems' } β†’ (theorems = theorems' β†’ P) β†’ P
Ideal.map_includeRight_eq
Mathlib.LinearAlgebra.TensorProduct.RightExactness
βˆ€ {R : Type u_1} [inst : CommSemiring R] {A : Type u_2} {B : Type u_3} [inst_1 : Semiring A] [inst_2 : Semiring B] [inst_3 : Algebra R A] [inst_4 : Algebra R B] (I : Ideal B), Submodule.restrictScalars R (Ideal.map Algebra.TensorProduct.includeRight I) = LinearMap.range (LinearMap.lTensor A (Submodule.restrictScalars R I).subtype)
Hyperreal.termΞ΅
Mathlib.Analysis.Real.Hyperreal
Lean.ParserDescr
Filter.map_mul
Mathlib.Order.Filter.Pointwise
βˆ€ {F : Type u_1} {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : Mul Ξ±] [inst_1 : Mul Ξ²] {f₁ fβ‚‚ : Filter Ξ±} [inst_2 : FunLike F Ξ± Ξ²] [MulHomClass F Ξ± Ξ²] (m : F), Filter.map (⇑m) (f₁ * fβ‚‚) = Filter.map (⇑m) f₁ * Filter.map (⇑m) fβ‚‚
Pi.smulZeroClass._proof_1
Mathlib.Algebra.GroupWithZero.Action.Pi
βˆ€ {I : Type u_1} {f : I β†’ Type u_2} (Ξ± : Type u_3) {n : (i : I) β†’ Zero (f i)} [inst : (i : I) β†’ SMulZeroClass Ξ± (f i)] (x : Ξ±), x β€’ 0 = 0
Int.fdiv_nonneg
Init.Data.Int.DivMod.Lemmas
βˆ€ {a b : β„€}, 0 ≀ a β†’ 0 ≀ b β†’ 0 ≀ a.fdiv b
Affine.Simplex.incenter_mem_interior
Mathlib.Geometry.Euclidean.Incenter
βˆ€ {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MetricSpace P] [inst_3 : NormedAddTorsor V P] {n : β„•} [inst_4 : NeZero n] (s : Affine.Simplex ℝ P n), s.incenter ∈ s.interior
_private.Lean.DocString.Extension.0.Lean.VersoModuleDocs.DocFrame
Lean.DocString.Extension
Type
_private.Mathlib.Analysis.Complex.LocallyUniformLimit.0.TendstoLocallyUniformlyOn.deriv._simp_1_2
Mathlib.Analysis.Complex.LocallyUniformLimit
βˆ€ (Ξ± : Sort u), (βˆ€ (a : Ξ±), True) = True
tprod_apply
Mathlib.Topology.Algebra.InfiniteSum.Constructions
βˆ€ {Ξ± : Type u_1} {ΞΉ : Type u_4} {X : Ξ± β†’ Type u_5} [inst : (x : Ξ±) β†’ CommMonoid (X x)] [inst_1 : (x : Ξ±) β†’ TopologicalSpace (X x)] {L : SummationFilter ΞΉ} [L.NeBot] [βˆ€ (x : Ξ±), T2Space (X x)] {f : ΞΉ β†’ (x : Ξ±) β†’ X x} {x : Ξ±}, Multipliable f L β†’ (∏'[L] (i : ΞΉ), f i) x = ∏'[L] (i : ΞΉ), f i x
CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCoconeIsColimit._proof_1
Mathlib.CategoryTheory.Monad.Limits
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {J : Type u_4} [inst_1 : CategoryTheory.Category.{u_3, u_4} J] {T : CategoryTheory.Comonad C} (D : CategoryTheory.Functor J T.Coalgebra) (c : CategoryTheory.Limits.Cocone (D.comp T.forget)) (t : CategoryTheory.Limits.IsColimit c) (s : CategoryTheory.Limits.Cocone D) (j : J), CategoryTheory.CategoryStruct.comp (c.ΞΉ.app j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Comonad.ForgetCreatesColimits'.liftedCocone D c t).pt.a (T.map (t.desc (T.forget.mapCocone s)))) = CategoryTheory.CategoryStruct.comp (c.ΞΉ.app j) (CategoryTheory.CategoryStruct.comp (t.desc (T.forget.mapCocone s)) s.pt.a)
HahnSeries.coeff_zero
Mathlib.RingTheory.HahnSeries.Basic
βˆ€ {Ξ“ : Type u_1} {R : Type u_3} [inst : PartialOrder Ξ“] [inst_1 : Zero R] {a : Ξ“}, HahnSeries.coeff 0 a = 0
Combinatorics.Line.casesOn
Mathlib.Combinatorics.HalesJewett
{Ξ± : Type u_5} β†’ {ΞΉ : Type u_6} β†’ {motive : Combinatorics.Line Ξ± ΞΉ β†’ Sort u} β†’ (t : Combinatorics.Line Ξ± ΞΉ) β†’ ((idxFun : ΞΉ β†’ Option Ξ±) β†’ (proper : βˆƒ i, idxFun i = none) β†’ motive { idxFun := idxFun, proper := proper }) β†’ motive t
Descriptive.Tree.mem_pullSub_append._simp_1
Mathlib.SetTheory.Descriptive.Tree
βˆ€ {A : Type u_1} {T : β†₯(Descriptive.tree A)} {x y : List A}, (x ++ y ∈ Descriptive.Tree.pullSub T x) = (y ∈ T)
_private.Std.Data.DTreeMap.Internal.Lemmas.0.Std.DTreeMap.Internal.Impl.isEmpty_filter_key_eq_false_iff._simp_1_1
Std.Data.DTreeMap.Internal.Lemmas
βˆ€ {Ξ± : Sort u_1} {p : Ξ± β†’ Prop}, (Β¬βˆ€ (x : Ξ±), p x) = βˆƒ x, Β¬p x
CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan_functor_obj
Mathlib.CategoryTheory.Limits.Constructions.Over.Products
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y Z : C} {f : X ⟢ Y} {g : X ⟢ Z} (c : CategoryTheory.Limits.PushoutCocone f g), CategoryTheory.Limits.pushoutCoconeEquivBinaryCofan.functor.obj c = CategoryTheory.Limits.BinaryCofan.mk (CategoryTheory.Under.homMk c.inl β‹―) (CategoryTheory.Under.homMk c.inr β‹―)
Turing.ToPartrec.Cfg.ret.elim
Mathlib.Computability.TMConfig
{motive : Turing.ToPartrec.Cfg β†’ Sort u} β†’ (t : Turing.ToPartrec.Cfg) β†’ t.ctorIdx = 1 β†’ ((a : Turing.ToPartrec.Cont) β†’ (a_1 : List β„•) β†’ motive (Turing.ToPartrec.Cfg.ret a a_1)) β†’ motive t
R0Space.casesOn
Mathlib.Topology.Separation.Basic
{X : Type u} β†’ [inst : TopologicalSpace X] β†’ {motive : R0Space X β†’ Sort u_1} β†’ (t : R0Space X) β†’ ((specializes_symmetric : Symmetric Specializes) β†’ motive β‹―) β†’ motive t
SimpleGraph.dist_eq_one_iff_adj._simp_1
Mathlib.Combinatorics.SimpleGraph.Metric
βˆ€ {V : Type u_1} {G : SimpleGraph V} {u v : V}, (G.dist u v = 1) = G.Adj u v
Lean.Compiler.LCNF.FloatLetIn.dontFloat
Lean.Compiler.LCNF.FloatLetIn
Lean.Compiler.LCNF.CodeDecl β†’ Lean.Compiler.LCNF.FloatLetIn.FloatM Unit
WithTop.instUniqueOfIsEmpty.eq_1
Mathlib.Order.WithBot
βˆ€ {Ξ± : Type u_1} [inst : IsEmpty Ξ±], WithTop.instUniqueOfIsEmpty = Option.instUniqueOfIsEmpty
LinearMap.coe_compAlternatingMap
Mathlib.LinearAlgebra.Alternating.Basic
βˆ€ {R : Type u_1} [inst : Semiring R] {M : Type u_2} [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {N : Type u_3} [inst_3 : AddCommMonoid N] [inst_4 : Module R N] {ΞΉ : Type u_7} {Nβ‚‚ : Type u_11} [inst_5 : AddCommMonoid Nβ‚‚] [inst_6 : Module R Nβ‚‚] (g : N β†’β‚—[R] Nβ‚‚) (f : M [β‹€^ΞΉ]β†’β‚—[R] N), ⇑(g.compAlternatingMap f) = ⇑g ∘ ⇑f
Lean.MonadLog.logMessage
Lean.Log
{m : Type β†’ Type} β†’ [self : Lean.MonadLog m] β†’ Lean.Message β†’ m Unit
Topology.RelCWComplex.isClosed_inter_cellFrontier_succ_of_le_isClosed_inter_closedCell
Mathlib.Topology.CWComplex.Classical.Basic
βˆ€ {X : Type u_1} [t : TopologicalSpace X] {C D : Set X} [inst : Topology.RelCWComplex C D] [T2Space X] {A : Set X} {n : β„•}, (βˆ€ m ≀ n, βˆ€ (j : Topology.RelCWComplex.cell C m), IsClosed (A ∩ Topology.RelCWComplex.closedCell m j)) β†’ βˆ€ (j : Topology.RelCWComplex.cell C (n + 1)), IsClosed (A ∩ D) β†’ IsClosed (A ∩ Topology.RelCWComplex.cellFrontier (n + 1) j)
CategoryTheory.Functor.CommShiftβ‚‚.commShiftFlipObj
Mathlib.CategoryTheory.Shift.CommShiftTwo
{C₁ : Type u_1} β†’ {Cβ‚‚ : Type u_3} β†’ {D : Type u_5} β†’ {inst : CategoryTheory.Category.{v_1, u_1} C₁} β†’ {inst_1 : CategoryTheory.Category.{v_3, u_3} Cβ‚‚} β†’ {inst_2 : CategoryTheory.Category.{v_5, u_5} D} β†’ {M : Type u_6} β†’ {inst_3 : AddCommMonoid M} β†’ {inst_4 : CategoryTheory.HasShift C₁ M} β†’ {inst_5 : CategoryTheory.HasShift Cβ‚‚ M} β†’ {inst_6 : CategoryTheory.HasShift D M} β†’ {G : CategoryTheory.Functor C₁ (CategoryTheory.Functor Cβ‚‚ D)} β†’ (h : CategoryTheory.CommShiftβ‚‚Setup D M) β†’ [self : G.CommShiftβ‚‚ h] β†’ (Xβ‚‚ : Cβ‚‚) β†’ (G.flip.obj Xβ‚‚).CommShift M
Std.Internal.IO.Async.Signal.Waiter._sizeOf_1
Std.Internal.Async.Signal
Std.Internal.IO.Async.Signal.Waiter β†’ β„•
_private.Mathlib.Order.KrullDimension.0.Order.krullDim_pos_iff._simp_1_1
Mathlib.Order.KrullDimension
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] {a : Ξ±}, (βˆ€ (b : Ξ±), Β¬a < b) = IsMax a
_private.Mathlib.MeasureTheory.Function.StronglyMeasurable.AEStronglyMeasurable.0.cond.match_1.eq_2
Mathlib.MeasureTheory.Function.StronglyMeasurable.AEStronglyMeasurable
βˆ€ (motive : Bool β†’ Sort u_1) (h_1 : Unit β†’ motive true) (h_2 : Unit β†’ motive false), (match false with | true => h_1 () | false => h_2 ()) = h_2 ()