name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
_private.Lean.Compiler.LCNF.ToLCNF.0.Lean.Compiler.LCNF.ToLCNF.toLCNF.etaIfUnderApplied
Lean.Compiler.LCNF.ToLCNF
Lean.Expr → ℕ → Lean.Compiler.LCNF.ToLCNF.M Lean.Compiler.LCNF.Arg → Lean.Compiler.LCNF.ToLCNF.M Lean.Compiler.LCNF.Arg
DFinsupp.Lex.addLeftStrictMono
Mathlib.Data.DFinsupp.Lex
∀ {ι : Type u_1} {α : ι → Type u_2} [inst : LinearOrder ι] [inst_1 : (i : ι) → AddMonoid (α i)] [inst_2 : (i : ι) → LinearOrder (α i)] [∀ (i : ι), AddLeftStrictMono (α i)], AddLeftStrictMono (Lex (Π₀ (i : ι), α i))
CategoryTheory.WithInitial.incl.eq_1
Mathlib.CategoryTheory.WithTerminal.Basic
∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C], CategoryTheory.WithInitial.incl = { obj := CategoryTheory.WithInitial.of, map := fun {X Y} f => f, map_id := ⋯, map_comp := ⋯ }
OrderIso.lowerBounds_image
Mathlib.Order.Bounds.OrderIso
∀ {α : Type u_1} {β : Type u_2} [inst : Preorder α] [inst_1 : Preorder β] (f : α ≃o β) {s : Set α}, lowerBounds (⇑f '' s) = ⇑f '' lowerBounds s
Int8.reduceGT._regBuiltin.Int8.reduceGT.declare_1._@.Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt.3529513953._hygCtx._hyg.213
Lean.Meta.Tactic.Simp.BuiltinSimprocs.SInt
IO Unit
Set.image_op_add
Mathlib.Algebra.Group.Pointwise.Set.Basic
∀ {α : Type u_2} [inst : Add α] {s t : Set α}, AddOpposite.op '' (s + t) = AddOpposite.op '' t + AddOpposite.op '' s
Bool.instCommutativeAnd
Init.Data.Bool
Std.Commutative fun x1 x2 => x1 && x2
Std.Tactic.BVDecide.BVUnOp.rotateLeft.inj
Std.Tactic.BVDecide.Bitblast.BVExpr.Basic
∀ {n n_1 : ℕ}, Std.Tactic.BVDecide.BVUnOp.rotateLeft n = Std.Tactic.BVDecide.BVUnOp.rotateLeft n_1 → n = n_1
instFullPreordCatPreordToCat
Mathlib.Order.Category.Preord
preordToCat.Full
_private.Mathlib.Combinatorics.Matroid.Map.0.Matroid.map_dual._simp_1_2
Mathlib.Combinatorics.Matroid.Map
∀ {α : Type u_1} {β : Type u_2} {f : α → β} {s : Set α} {t : Set β}, (t ⊆ f '' s) = ∃ u ⊆ s, f '' u = t
_private.Mathlib.Data.Matrix.Basis.0.Matrix.single_mem_matrix._simp_1_1
Mathlib.Data.Matrix.Basis
∀ {m : Type u_2} {n : Type u_3} {α : Type v} {S : Set α} {M : Matrix m n α}, (M ∈ S.matrix) = ∀ (i : m) (j : n), M i j ∈ S
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.Basic
∀ {R : Type u_1} [inst : CommSemiring R] (a : R) (b : ℕ), a ^ b = (a + 0) ^ b * Nat.rawCast 1
Lean.Compiler.LCNF.SpecState
Lean.Compiler.LCNF.SpecInfo
Type
inv_gold
Mathlib.NumberTheory.Real.GoldenRatio
Real.goldenRatio⁻¹ = -Real.goldenConj
_private.Init.Data.UInt.Lemmas.0.UInt64.toUInt16_le._simp_1_1
Init.Data.UInt.Lemmas
∀ {a b : UInt64}, (a ≤ b) = (a.toNat ≤ b.toNat)
KaehlerDifferential.submodule_span_range_eq_ideal
Mathlib.RingTheory.Kaehler.Basic
∀ (R : Type u) (S : Type v) [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : Algebra R S], Submodule.span S (Set.range fun s => 1 ⊗ₜ[R] s - s ⊗ₜ[R] 1) = Submodule.restrictScalars S (KaehlerDifferential.ideal R S)
TensorAlgebra.equivFreeAlgebra._proof_4
Mathlib.LinearAlgebra.TensorAlgebra.Basis
∀ {R : Type u_1} [inst : CommSemiring R], RingHomCompTriple (RingHom.id R) (RingHom.id R) (RingHom.id R)
WellFounded.instIsAsymmRel
Mathlib.Order.WellFounded
∀ {α : Type u_1} [inst : WellFoundedRelation α], IsAsymm α WellFoundedRelation.rel
Nat.nth_le_of_strictMonoOn_of_mapsTo
Mathlib.Data.Nat.Nth
∀ {p : ℕ → Prop} (f : ℕ → ℕ), Set.MapsTo f {n | ∀ (hf : (setOf p).Finite), n < hf.toFinset.card} (setOf p) → StrictMonoOn f {n | ∀ (hf : (setOf p).Finite), n < hf.toFinset.card} → ∀ {n : ℕ}, Nat.nth p n ≤ f n
FreeAlgebra.Rel.add_assoc
Mathlib.Algebra.FreeAlgebra
∀ {R : Type u_1} {X : Type u_2} [inst : CommSemiring R] {a b c : FreeAlgebra.Pre R X}, FreeAlgebra.Rel R X (a + b + c) (a + (b + c))
Std.DTreeMap.Internal.Impl.Const.maxEntry!._unsafe_rec
Std.Data.DTreeMap.Internal.Queries
{α : Type u} → {β : Type v} → [Inhabited (α × β)] → (Std.DTreeMap.Internal.Impl α fun x => β) → α × β
Lean.Grind.AC.Seq.concat_k.eq_1
Init.Grind.AC
∀ (s₁ : Lean.Grind.AC.Seq), s₁.concat_k = Lean.Grind.AC.Seq.rec (motive := fun x => Lean.Grind.AC.Seq → Lean.Grind.AC.Seq) (fun x s₂ => Lean.Grind.AC.Seq.cons x s₂) (fun x x_1 ih s₂ => Lean.Grind.AC.Seq.cons x (ih s₂)) s₁
_private.Lean.Data.EditDistance.0.Lean.EditDistance.levenshtein._proof_1
Lean.Data.EditDistance
∀ (str2 : String), ∀ i ∈ [:(Vector.replicate (str2.length + 1) 0).size], i < str2.length + 1
AddSubmonoid.mem_map_of_mem
Mathlib.Algebra.Group.Submonoid.Operations
∀ {M : Type u_1} {N : Type u_2} [inst : AddZeroClass M] [inst_1 : AddZeroClass N] {F : Type u_4} [inst_2 : FunLike F M N] [mc : AddMonoidHomClass F M N] (f : F) {S : AddSubmonoid M} {x : M}, x ∈ S → f x ∈ AddSubmonoid.map f S
AddMagmaCat.neg_hom_apply
Mathlib.Algebra.Category.Semigrp.Basic
∀ {M N : AddMagmaCat} (e : M ≅ N) (x : ↑M), (CategoryTheory.ConcreteCategory.hom e.inv) ((CategoryTheory.ConcreteCategory.hom e.hom) x) = x
Aesop.SafeRulesResult.succeeded.inj
Aesop.Search.Expansion
∀ {newRapps newRapps_1 : Array Aesop.RappRef}, Aesop.SafeRulesResult.succeeded newRapps = Aesop.SafeRulesResult.succeeded newRapps_1 → newRapps = newRapps_1
one_leftCoset
Mathlib.GroupTheory.Coset.Basic
∀ {α : Type u_1} [inst : Monoid α] (s : Set α), 1 • s = s
Lean.IR.ToIR.BuilderState.joinPoints._default
Lean.Compiler.IR.ToIR
Std.HashMap Lean.FVarId Lean.IR.JoinPointId
_private.Mathlib.Tactic.CC.0.Mathlib.Tactic.CC.elabCCConfig.match_1
Mathlib.Tactic.CC
(motive : DoResultPR Mathlib.Tactic.CC.CCConfig Mathlib.Tactic.CC.CCConfig PUnit.{1} → Sort u_1) → (r : DoResultPR Mathlib.Tactic.CC.CCConfig Mathlib.Tactic.CC.CCConfig PUnit.{1}) → ((a : Mathlib.Tactic.CC.CCConfig) → (u : PUnit.{1}) → motive (DoResultPR.pure a u)) → ((b : Mathlib.Tactic.CC.CCConfig) → (u : PUnit.{1}) → motive (DoResultPR.return b u)) → motive r
_private.Init.Data.List.Nat.Erase.0.List.eraseIdx_set_lt._proof_1_2
Init.Data.List.Nat.Erase
∀ {α : Type u_1} {l : List α} {i j : ℕ} {a : α}, j < i → ∀ n < j, i - 1 = n → False
PowerBasis.map
Mathlib.RingTheory.PowerBasis
{R : Type u_1} → {S : Type u_2} → [inst : CommRing R] → [inst_1 : Ring S] → [inst_2 : Algebra R S] → {S' : Type u_7} → [inst_3 : CommRing S'] → [inst_4 : Algebra R S'] → PowerBasis R S → (S ≃ₐ[R] S') → PowerBasis R S'
_private.Batteries.Data.List.Basic.0.List.forall₂_cons.match_1_1
Batteries.Data.List.Basic
∀ {α : Type u_1} {β : Type u_2} {R : α → β → Prop} {a : α} {b : β} {l₁ : List α} {l₂ : List β} (motive : List.Forall₂ R (a :: l₁) (b :: l₂) → Prop) (x : List.Forall₂ R (a :: l₁) (b :: l₂)), (∀ (h : R a b) (tail : List.Forall₂ R l₁ l₂), motive ⋯) → motive x
Lean.Server.RequestError.rec
Lean.Server.Requests
{motive : Lean.Server.RequestError → Sort u} → ((code : Lean.JsonRpc.ErrorCode) → (message : String) → motive { code := code, message := message }) → (t : Lean.Server.RequestError) → motive t
NonemptyInterval.toDualProd_injective
Mathlib.Order.Interval.Basic
∀ {α : Type u_1} [inst : LE α], Function.Injective NonemptyInterval.toDualProd
_private.Batteries.Data.List.Lemmas.0.List.mem_findIdxs_iff_getElem_sub_pos._proof_1_7
Batteries.Data.List.Lemmas
∀ {α : Type u_1} {i : ℕ} (head : α) (tail : List α) {s : ℕ}, -1 * ↑i + ↑s ≤ 0 → i - s + 1 ≤ (head :: tail).length → -1 * ↑i + ↑s + 1 ≤ 0 → i - (s + 1) < tail.length
CategoryTheory.Equivalence.symmEquivInverse_obj_functor
Mathlib.CategoryTheory.Equivalence.Symmetry
∀ (C : Type u_1) [inst : CategoryTheory.Category.{v_1, u_1} C] (D : Type u_2) [inst_1 : CategoryTheory.Category.{v_2, u_2} D] (X : (D ≌ C)ᵒᵖ), ((CategoryTheory.Equivalence.symmEquivInverse C D).obj X).functor = (Opposite.unop X).inverse
_private.Mathlib.Data.Finset.SymmDiff.0.Finset.mem_symmDiff._simp_1_1
Mathlib.Data.Finset.SymmDiff
∀ {α : Type u_1} [inst : DecidableEq α] {s t : Finset α} {a : α}, (a ∈ s ∪ t) = (a ∈ s ∨ a ∈ t)
Std.DHashMap.Raw.Const.all_keys
Std.Data.DHashMap.RawLemmas
∀ {α : Type u} [inst : BEq α] [inst_1 : Hashable α] {β : Type v} {m : Std.DHashMap.Raw α fun x => β} [LawfulHashable α] [EquivBEq α] {p : α → Bool}, m.WF → m.keys.all p = m.all fun a x => p a
Int.fmod_fmod
Init.Data.Int.DivMod.Lemmas
∀ (a b : ℤ), (a.fmod b).fmod b = a.fmod b
CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux
Mathlib.Algebra.Category.ModuleCat.Presheaf.Sheafify
∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {J : CategoryTheory.GrothendieckTopology C} {R₀ R : CategoryTheory.Functor Cᵒᵖ RingCat} (α : R₀ ⟶ R) [CategoryTheory.Presheaf.IsLocallyInjective J α] {M₀ : PresheafOfModules R₀} {A : CategoryTheory.Functor Cᵒᵖ AddCommGrpCat} (φ : M₀.presheaf ⟶ A) [CategoryTheory.Presheaf.IsLocallyInjective J φ], CategoryTheory.Presheaf.IsSeparated J A → ∀ {X : C} (r : ↑(R.obj (Opposite.op X))) (m : ↑(A.obj (Opposite.op X))) {Y Z : C} (f : Y ⟶ X) (g : Z ⟶ Y) (r₀ : ↑(R₀.obj (Opposite.op Y))) (r₀' : ↑(R₀.obj (Opposite.op Z))) (m₀ : ↑(M₀.obj (Opposite.op Y))) (m₀' : ↑(M₀.obj (Opposite.op Z))), (CategoryTheory.ConcreteCategory.hom (α.app (Opposite.op Y))) r₀ = (CategoryTheory.ConcreteCategory.hom (R.map f.op)) r → (CategoryTheory.ConcreteCategory.hom (α.app (Opposite.op Z))) r₀' = (CategoryTheory.ConcreteCategory.hom (R.map (CategoryTheory.CategoryStruct.comp f.op g.op))) r → (CategoryTheory.ConcreteCategory.hom (φ.app (Opposite.op Y))) m₀ = (CategoryTheory.ConcreteCategory.hom (A.map f.op)) m → (CategoryTheory.ConcreteCategory.hom (φ.app (Opposite.op Z))) m₀' = (CategoryTheory.ConcreteCategory.hom (A.map (CategoryTheory.CategoryStruct.comp f.op g.op))) m → (CategoryTheory.ConcreteCategory.hom (φ.app (Opposite.op Z))) ((CategoryTheory.ConcreteCategory.hom (M₀.map g.op)) (r₀ • m₀)) = (CategoryTheory.ConcreteCategory.hom (φ.app (Opposite.op Z))) (r₀' • m₀')
_private.Mathlib.Computability.Primrec.0.Primrec₂.uncurry.match_1_1
Mathlib.Computability.Primrec
∀ {α : Type u_1} {β : Type u_2} (motive : α × β → Prop) (x : α × β), (∀ (a : α) (b : β), motive (a, b)) → motive x
CategoryTheory.Pseudofunctor.StrongTrans.naturality_comp
Mathlib.CategoryTheory.Bicategory.NaturalTransformation.Pseudo
∀ {B : Type u₁} [inst : CategoryTheory.Bicategory B] {C : Type u₂} [inst_1 : CategoryTheory.Bicategory C] {F G : CategoryTheory.Pseudofunctor B C} (self : F.StrongTrans G) {a b c : B} (f : a ⟶ b) (g : b ⟶ c), CategoryTheory.CategoryStruct.comp (self.naturality (CategoryTheory.CategoryStruct.comp f g)).hom (CategoryTheory.Bicategory.whiskerLeft (self.app a) (G.mapComp f g).hom) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp f g).hom (self.app c)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (F.map g) (self.app c)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f) (self.naturality g).hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f) (self.app b) (G.map g)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.naturality f).hom (G.map g)) (CategoryTheory.Bicategory.associator (self.app a) (G.map f) (G.map g)).hom))))
CategoryTheory.ShortComplex.Splitting.ofIsIsoOfIsZero._proof_4
Mathlib.Algebra.Homology.ShortComplex.Exact
∀ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex C) (hf : CategoryTheory.IsIso S.f), CategoryTheory.CategoryStruct.comp (CategoryTheory.inv S.f) S.f + CategoryTheory.CategoryStruct.comp S.g 0 = CategoryTheory.CategoryStruct.id S.X₂
_private.Lean.Compiler.LCNF.StructProjCases.0.Lean.Compiler.LCNF.StructProjCases.findStructCtorInfo?._sparseCasesOn_9
Lean.Compiler.LCNF.StructProjCases
{motive : Lean.ConstantInfo → Sort u} → (t : Lean.ConstantInfo) → ((val : Lean.InductiveVal) → motive (Lean.ConstantInfo.inductInfo val)) → (Nat.hasNotBit 32 t.ctorIdx → motive t) → motive t
CategoryTheory.MorphismProperty.Comma.Hom.ext'
Mathlib.CategoryTheory.MorphismProperty.Comma
∀ {A : Type u_1} [inst : CategoryTheory.Category.{v_1, u_1} A] {B : Type u_2} [inst_1 : CategoryTheory.Category.{v_2, u_2} B] {T : Type u_3} [inst_2 : CategoryTheory.Category.{v_3, u_3} T] {L : CategoryTheory.Functor A T} {R : CategoryTheory.Functor B T} {P : CategoryTheory.MorphismProperty T} {Q : CategoryTheory.MorphismProperty A} {W : CategoryTheory.MorphismProperty B} [inst_3 : Q.IsMultiplicative] [inst_4 : W.IsMultiplicative] {X Y : CategoryTheory.MorphismProperty.Comma L R P Q W} {f g : X ⟶ Y}, CategoryTheory.MorphismProperty.Comma.Hom.hom f = CategoryTheory.MorphismProperty.Comma.Hom.hom g → f = g
Finset.filter_le_eq_Ici
Mathlib.Order.Interval.Finset.Basic
∀ {α : Type u_2} [inst : Preorder α] [inst_1 : LocallyFiniteOrderTop α] {a : α} [inst_2 : Fintype α] [inst_3 : DecidablePred fun x => a ≤ x], {x | a ≤ x} = Finset.Ici a
SzemerediRegularity.stepBound_mono
Mathlib.Combinatorics.SimpleGraph.Regularity.Bound
Monotone SzemerediRegularity.stepBound
contDiff_id
Mathlib.Analysis.Calculus.ContDiff.Basic
∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type uE} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {n : WithTop ℕ∞}, ContDiff 𝕜 n id
_private.Mathlib.Algebra.ContinuedFractions.Computation.Approximations.0.GenContFract.fib_le_of_contsAux_b._proof_1_1
Mathlib.Algebra.ContinuedFractions.Computation.Approximations
∀ (n : ℕ), ¬n + 2 ≤ 1
Std.DTreeMap.getKey!_eq_of_mem
Std.Data.DTreeMap.Lemmas
∀ {α : Type u} {β : α → Type v} {cmp : α → α → Ordering} {t : Std.DTreeMap α β cmp} [Std.TransCmp cmp] [Std.LawfulEqCmp cmp] [inst : Inhabited α] {k : α}, k ∈ t → t.getKey! k = k
Subring.copy._proof_4
Mathlib.Algebra.Ring.Subring.Defs
∀ {R : Type u_1} [inst : Ring R] (S : Subring R) (s : Set R) (hs : s = ↑S), 0 ∈ (S.copy s hs).carrier
HNNExtension.toSubgroup_neg_one
Mathlib.GroupTheory.HNNExtension
∀ {G : Type u_1} [inst : Group G] (A B : Subgroup G), HNNExtension.toSubgroup A B (-1) = B
ZMod.val_neg_of_ne_zero
Mathlib.Data.ZMod.Basic
∀ {n : ℕ} [nz : NeZero n] (a : ZMod n) [na : NeZero a], (-a).val = n - a.val
String.ofList_eq_empty_iff
Init.Data.String.Basic
∀ {l : List Char}, String.ofList l = "" ↔ l = []
_private.Batteries.Data.String.Lemmas.0.Substring.Raw.Valid.prevn.match_1_3
Batteries.Data.String.Lemmas
∀ (x : Substring.Raw) (motive : (∃ l m r, Substring.Raw.ValidFor l m r x) → Prop) (x_1 : ∃ l m r, Substring.Raw.ValidFor l m r x), (∀ (l m r : List Char) (h : Substring.Raw.ValidFor l m r x), motive ⋯) → motive x_1
Module.End.instDivisionRing._proof_12
Mathlib.RingTheory.SimpleModule.Basic
∀ {R : Type u_1} [inst : Ring R] {M : Type u_2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] (x : Module.End R M), Semiring.npow 0 x = 1
CompleteDistribLattice.toSDiff
Mathlib.Order.CompleteBooleanAlgebra
{α : Type u_1} → [self : CompleteDistribLattice α] → SDiff α
CategoryTheory.Limits.IsLimit.whiskerEquivalence
Mathlib.CategoryTheory.Limits.IsLimit
{J : Type u₁} → [inst : CategoryTheory.Category.{v₁, u₁} J] → {K : Type u₂} → [inst_1 : CategoryTheory.Category.{v₂, u₂} K] → {C : Type u₃} → [inst_2 : CategoryTheory.Category.{v₃, u₃} C] → {F : CategoryTheory.Functor J C} → {s : CategoryTheory.Limits.Cone F} → CategoryTheory.Limits.IsLimit s → (e : K ≌ J) → CategoryTheory.Limits.IsLimit (CategoryTheory.Limits.Cone.whisker e.functor s)
Lean.Meta.Grind.AC.EqCnstrProof.core.injEq
Lean.Meta.Tactic.Grind.AC.Types
∀ (a b : Lean.Expr) (ea eb : Lean.Grind.AC.Expr) (a_1 b_1 : Lean.Expr) (ea_1 eb_1 : Lean.Grind.AC.Expr), (Lean.Meta.Grind.AC.EqCnstrProof.core a b ea eb = Lean.Meta.Grind.AC.EqCnstrProof.core a_1 b_1 ea_1 eb_1) = (a = a_1 ∧ b = b_1 ∧ ea = ea_1 ∧ eb = eb_1)
instFintypeAddEquivInt._proof_2
Mathlib.GroupTheory.ArchimedeanDensely
AddEquiv.neg ℤ ∉ {AddEquiv.refl ℤ}
ProperSpace.mk._flat_ctor
Mathlib.Topology.MetricSpace.ProperSpace
∀ {α : Type u} [inst : PseudoMetricSpace α], (∀ (x : α) (r : ℝ), IsCompact (Metric.closedBall x r)) → ProperSpace α
isRelLowerSet_self._simp_1
Mathlib.Order.UpperLower.Relative
∀ {α : Type u_1} {s : Set α} [inst : LE α], (IsRelLowerSet s fun x => x ∈ s) = True
Equiv.commSemigroup.eq_1
Mathlib.Algebra.Group.TransferInstance
∀ {α : Type u_2} {β : Type u_3} (e : α ≃ β) [inst : CommSemigroup β], e.commSemigroup = Function.Injective.commSemigroup ⇑e ⋯ ⋯
tsum_eq_sum'
Mathlib.Topology.Algebra.InfiniteSum.Basic
∀ {α : Type u_1} {β : Type u_2} [inst : AddCommMonoid α] [inst_1 : TopologicalSpace α] {f : β → α} {L : SummationFilter β} [L.LeAtTop] {s : Finset β}, Function.support f ⊆ ↑s → ∑'[L] (b : β), f b = ∑ b ∈ s, f b
AlgebraicGeometry.Scheme.germToFunctionField._proof_1
Mathlib.AlgebraicGeometry.FunctionField
∀ (X : AlgebraicGeometry.Scheme) (U : X.Opens) [h : Nonempty ↥↑U], (Set.univ ∩ ↑U).Nonempty
Finset.Nonempty.norm_prod_le_sup'_norm
Mathlib.Analysis.Normed.Group.Ultra
∀ {M : Type u_1} {ι : Type u_2} [inst : SeminormedCommGroup M] [IsUltrametricDist M] {s : Finset ι} (hs : s.Nonempty) (f : ι → M), ‖∏ i ∈ s, f i‖ ≤ s.sup' hs fun x => ‖f x‖
Prefunctor.IsCovering.comp
Mathlib.Combinatorics.Quiver.Covering
∀ {U : Type u_1} [inst : Quiver U] {V : Type u_2} [inst_1 : Quiver V] (φ : U ⥤q V) {W : Type u_3} [inst_2 : Quiver W] (ψ : V ⥤q W), φ.IsCovering → ψ.IsCovering → (φ ⋙q ψ).IsCovering
Int.existsUnique_equiv
Mathlib.Data.Int.ModEq
∀ (a : ℤ) {b : ℤ}, 0 < b → ∃ z, 0 ≤ z ∧ z < b ∧ z ≡ a [ZMOD b]
padicNormE._proof_4
Mathlib.NumberTheory.Padics.PadicNumbers
∀ {p : ℕ} [hp : Fact (Nat.Prime p)] (q : ℚ_[p]), 0 ≤ Quotient.lift PadicSeq.norm ⋯ q
CategoryTheory.instDivisionRingEndOfHasKernelsOfSimple.congr_simp
Mathlib.CategoryTheory.Preadditive.Schur
∀ {C : Type u_1} [inst : CategoryTheory.Category.{v_1, u_1} C] [inst_1 : CategoryTheory.Preadditive C] [inst_2 : CategoryTheory.Limits.HasKernels C] {X : C} [inst_3 : CategoryTheory.Simple X], CategoryTheory.instDivisionRingEndOfHasKernelsOfSimple = CategoryTheory.instDivisionRingEndOfHasKernelsOfSimple
enorm_pos'._simp_4
Mathlib.Analysis.Normed.Group.Basic
∀ {E : Type u_8} [inst : TopologicalSpace E] [inst_1 : ENormedAddMonoid E] {a : E}, (0 < ‖a‖ₑ) = (a ≠ 0)
List.head?_range'
Init.Data.List.Range
∀ {s n : ℕ}, (List.range' s n).head? = if n = 0 then none else some s
RCLike.nnnorm_nsmul
Mathlib.Analysis.RCLike.Basic
∀ (K : Type u_1) {E : Type u_2} [inst : RCLike K] [inst_1 : NormedAddCommGroup E] [NormedSpace K E] (n : ℕ) (x : E), ‖n • x‖₊ = n • ‖x‖₊
HomologicalComplex.mapBifunctor₁₂.ι_D₂_assoc
Mathlib.Algebra.Homology.BifunctorAssociator
∀ {C₁ : Type u_1} {C₂ : Type u_2} {C₁₂ : Type u_3} {C₃ : Type u_5} {C₄ : Type u_6} [inst : CategoryTheory.Category.{v_1, u_1} C₁] [inst_1 : CategoryTheory.Category.{v_2, u_2} C₂] [inst_2 : CategoryTheory.Category.{v_3, u_5} C₃] [inst_3 : CategoryTheory.Category.{v_4, u_6} C₄] [inst_4 : CategoryTheory.Category.{v_5, u_3} C₁₂] [inst_5 : CategoryTheory.Limits.HasZeroMorphisms C₁] [inst_6 : CategoryTheory.Limits.HasZeroMorphisms C₂] [inst_7 : CategoryTheory.Limits.HasZeroMorphisms C₃] [inst_8 : CategoryTheory.Preadditive C₁₂] [inst_9 : CategoryTheory.Preadditive C₄] (F₁₂ : CategoryTheory.Functor C₁ (CategoryTheory.Functor C₂ C₁₂)) (G : CategoryTheory.Functor C₁₂ (CategoryTheory.Functor C₃ C₄)) [inst_10 : F₁₂.PreservesZeroMorphisms] [inst_11 : ∀ (X₁ : C₁), (F₁₂.obj X₁).PreservesZeroMorphisms] [inst_12 : G.Additive] [inst_13 : ∀ (X₁₂ : C₁₂), (G.obj X₁₂).PreservesZeroMorphisms] {ι₁ : Type u_7} {ι₂ : Type u_8} {ι₃ : Type u_9} {ι₁₂ : Type u_10} {ι₄ : Type u_12} [inst_14 : DecidableEq ι₄] {c₁ : ComplexShape ι₁} {c₂ : ComplexShape ι₂} {c₃ : ComplexShape ι₃} (K₁ : HomologicalComplex C₁ c₁) (K₂ : HomologicalComplex C₂ c₂) (K₃ : HomologicalComplex C₃ c₃) (c₁₂ : ComplexShape ι₁₂) (c₄ : ComplexShape ι₄) [inst_15 : TotalComplexShape c₁ c₂ c₁₂] [inst_16 : TotalComplexShape c₁₂ c₃ c₄] [inst_17 : K₁.HasMapBifunctor K₂ F₁₂ c₁₂] [inst_18 : DecidableEq ι₁₂] [inst_19 : (K₁.mapBifunctor K₂ F₁₂ c₁₂).HasMapBifunctor K₃ G c₄] (i₁ : ι₁) (i₂ : ι₂) (i₃ : ι₃) (j j' : ι₄) (h : c₁.r c₂ c₃ c₁₂ c₄ (i₁, i₂, i₃) = j) [inst_20 : HomologicalComplex.HasGoodTrifunctor₁₂Obj F₁₂ G K₁ K₂ K₃ c₁₂ c₄] {Z : C₄} (h_1 : (⋯.mapBifunctor K₃ G c₄).X j' ⟶ Z), CategoryTheory.CategoryStruct.comp (HomologicalComplex.mapBifunctor₁₂.ι F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j h) (CategoryTheory.CategoryStruct.comp ⋯ h_1) = CategoryTheory.CategoryStruct.comp (HomologicalComplex.mapBifunctor₁₂.d₂ F₁₂ G K₁ K₂ K₃ c₁₂ c₄ i₁ i₂ i₃ j') h_1
Batteries.UnionFind.FindAux.mk.congr_simp
Batteries.Data.UnionFind.Basic
∀ {n : ℕ} (s s_1 : Array Batteries.UFNode) (e_s : s = s_1) (root root_1 : Fin n), root = root_1 → ∀ (size_eq : s.size = n), { s := s, root := root, size_eq := size_eq } = { s := s_1, root := root_1, size_eq := ⋯ }
UniformOnFun.hasBasis_uniformity_of_basis_aux₁
Mathlib.Topology.UniformSpace.UniformConvergenceTopology
∀ (α : Type u_1) (β : Type u_2) {ι : Type u_4} [inst : UniformSpace β] (𝔖 : Set (Set α)) {p : ι → Prop} {s : ι → Set (β × β)}, (uniformity β).HasBasis p s → ∀ (S : Set α), (uniformity (UniformOnFun α β 𝔖)).HasBasis p fun i => UniformOnFun.gen 𝔖 S (s i)
_private.Mathlib.Topology.DerivedSet.0.isClosed_derivedSet._simp_1_1
Mathlib.Topology.DerivedSet
∀ {X : Type u_1} [inst : TopologicalSpace X] (A : Set X), (derivedSet A ⊆ A) = IsClosed A
Complement.rec
Init.Prelude
{α : Type u} → {motive : Complement α → Sort u_1} → ((complement : α → α) → motive { complement := complement }) → (t : Complement α) → motive t
_private.Std.Data.DHashMap.Internal.WF.0.Std.DHashMap.Raw.fold.eq_1
Std.Data.DHashMap.Internal.WF
∀ {α : Type u} {β : α → Type v} {δ : Type w} (f : δ → (a : α) → β a → δ) (init : δ) (b : Std.DHashMap.Raw α β), Std.DHashMap.Raw.fold f init b = (Std.DHashMap.Raw.foldM (fun x1 x2 x3 => pure (f x1 x2 x3)) init b).run
CategoryTheory.Limits.Sigma.π
Mathlib.CategoryTheory.Limits.Shapes.ZeroMorphisms
{C : Type u} → [inst : CategoryTheory.Category.{v, u} C] → [CategoryTheory.Limits.HasZeroMorphisms C] → {β : Type w} → [DecidableEq β] → (f : β → C) → [inst_3 : CategoryTheory.Limits.HasCoproduct f] → (b : β) → ∐ f ⟶ f b
LowerSet.Iic_sup_erase
Mathlib.Order.UpperLower.Closure
∀ {α : Type u_1} [inst : Preorder α] {s : LowerSet α} {a : α}, a ∈ s → (∀ b ∈ s, a ≤ b → b = a) → LowerSet.Iic a ⊔ s.erase a = s
Mathlib.Tactic.BicategoryCoherence.LiftHom₂.casesOn
Mathlib.Tactic.CategoryTheory.BicategoryCoherence
{B : Type u} → [inst : CategoryTheory.Bicategory B] → {a b : B} → {f g : a ⟶ b} → [inst_1 : Mathlib.Tactic.BicategoryCoherence.LiftHom f] → [inst_2 : Mathlib.Tactic.BicategoryCoherence.LiftHom g] → {η : f ⟶ g} → {motive : Mathlib.Tactic.BicategoryCoherence.LiftHom₂ η → Sort u_1} → (t : Mathlib.Tactic.BicategoryCoherence.LiftHom₂ η) → ((lift : Mathlib.Tactic.BicategoryCoherence.LiftHom.lift f ⟶ Mathlib.Tactic.BicategoryCoherence.LiftHom.lift g) → motive { lift := lift }) → motive t
instIsTransOfIsWellOrder
Mathlib.Order.RelClasses
∀ {α : Type u_1} (r : α → α → Prop) [IsWellOrder α r], IsTrans α r
Path.add_apply
Mathlib.Topology.Path
∀ {X : Type u_1} [inst : TopologicalSpace X] [inst_1 : Add X] [inst_2 : ContinuousAdd X] {a₁ b₁ a₂ b₂ : X} (γ₁ : Path a₁ b₁) (γ₂ : Path a₂ b₂) (a : ↑unitInterval), (γ₁.add γ₂) a = γ₁ a + γ₂ a
QuadraticAlgebra.instMul
Mathlib.Algebra.QuadraticAlgebra.Defs
{R : Type u_1} → {a b : R} → [Mul R] → [Add R] → Mul (QuadraticAlgebra R a b)
AddConstEquiv._sizeOf_inst
Mathlib.Algebra.AddConstMap.Equiv
(G : Type u_1) → (H : Type u_2) → {inst : Add G} → {inst_1 : Add H} → (a : G) → (b : H) → [SizeOf G] → [SizeOf H] → SizeOf (AddConstEquiv G H a b)
MeasureTheory.uniformIntegrable_average
Mathlib.MeasureTheory.Function.UniformIntegrable
∀ {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {p : ENNReal} {E : Type u_4} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E], 1 ≤ p → ∀ {f : ℕ → α → E}, MeasureTheory.UniformIntegrable f p μ → MeasureTheory.UniformIntegrable (fun n => (↑n)⁻¹ • ∑ i ∈ Finset.range n, f i) p μ
MonoidHom.mker_inr
Mathlib.Algebra.Group.Submonoid.Operations
∀ {M : Type u_1} {N : Type u_2} [inst : MulOneClass M] [inst_1 : MulOneClass N], MonoidHom.mker (MonoidHom.inr M N) = ⊥
_private.Mathlib.Algebra.TrivSqZeroExt.0.TrivSqZeroExt.isUnit_inr_iff._simp_1_3
Mathlib.Algebra.TrivSqZeroExt
∀ {M₀ : Type u_2} [inst : MonoidWithZero M₀], IsUnit 0 = (0 = 1)
_private.Init.Data.BitVec.Bitblast.0.BitVec.saddOverflow_eq._simp_1_3
Init.Data.BitVec.Bitblast
∀ (p q : Prop) [dpq : Decidable (p ∧ q)] [dp : Decidable p] [dq : Decidable q], (decide p && decide q) = decide (p ∧ q)
PFunctor.Approx.AllAgree
Mathlib.Data.PFunctor.Univariate.M
{F : PFunctor.{uA, uB}} → ((n : ℕ) → PFunctor.Approx.CofixA F n) → Prop
_private.Lean.Elab.Tactic.Simp.0.Lean.Elab.Tactic.elabSimpConfig.match_1
Lean.Elab.Tactic.Simp
(motive : Lean.Elab.Tactic.SimpKind → Sort u_1) → (kind : Lean.Elab.Tactic.SimpKind) → (Unit → motive Lean.Elab.Tactic.SimpKind.simp) → (Unit → motive Lean.Elab.Tactic.SimpKind.simpAll) → (Unit → motive Lean.Elab.Tactic.SimpKind.dsimp) → motive kind
_private.Mathlib.Analysis.SpecialFunctions.Integrals.PosLogEqCircleAverage.0.circleAverage_log_norm_sub_const₂._simp_1_1
Mathlib.Analysis.SpecialFunctions.Integrals.PosLogEqCircleAverage
∀ {α : Type u} [inst : PseudoMetricSpace α] {x y : α} {ε : ℝ}, (y ∈ Metric.closedBall x ε) = (dist y x ≤ ε)
CategoryTheory.Functor.instIsEquivalenceOppositeOp
Mathlib.CategoryTheory.Opposites
∀ (C : Type u₁) [inst : CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {F : CategoryTheory.Functor C D} [F.IsEquivalence], F.op.IsEquivalence
Std.Sat.AIG.relabel
Std.Sat.AIG.Relabel
{α : Type} → [inst : Hashable α] → [inst_1 : DecidableEq α] → {β : Type} → [inst_2 : Hashable β] → [inst_3 : DecidableEq β] → (α → β) → Std.Sat.AIG α → Std.Sat.AIG β
Std.Iterators.TaskIterator._sizeOf_1
Lean.Elab.Parallel
{α : Type w} → [SizeOf α] → Std.Iterators.TaskIterator α → ℕ
CoalgCat.instMonoidalCategoryStruct._proof_1
Mathlib.Algebra.Category.CoalgCat.Monoidal
∀ (R : Type u_1) [inst : CommRing R] (X : CoalgCat R), IsScalarTower R R ↑X.toModuleCat
Lean.Server.Watchdog.RequestQueueMap.rec
Lean.Server.Watchdog
{motive : Lean.Server.Watchdog.RequestQueueMap → Sort u} → ((i : ℕ) → (reqs : Std.TreeMap Lean.JsonRpc.RequestID (ℕ × Lean.JsonRpc.Request Lean.Json) compare) → (queue : Std.TreeMap ℕ (Lean.JsonRpc.RequestID × Lean.JsonRpc.Request Lean.Json) compare) → motive { i := i, reqs := reqs, queue := queue }) → (t : Lean.Server.Watchdog.RequestQueueMap) → motive t
HomotopicalAlgebra.fibrations_eq_unop
Mathlib.AlgebraicTopology.ModelCategory.CategoryWithCofibrations
∀ (C : Type u) [inst : CategoryTheory.Category.{v, u} C] [inst_1 : HomotopicalAlgebra.CategoryWithFibrations C], HomotopicalAlgebra.fibrations C = (HomotopicalAlgebra.cofibrations Cᵒᵖ).unop
isEmpty_fintype._simp_1
Mathlib.Data.Fintype.EquivFin
∀ {α : Type u_4}, IsEmpty (Fintype α) = Infinite α