name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Lean.Widget.MsgEmbed.brecOn_3.eq
Lean.Widget.InteractiveDiagnostic
βˆ€ {motive_1 : Lean.Widget.MsgEmbed β†’ Sort u} {motive_2 : Lean.Widget.TaggedText Lean.Widget.MsgEmbed β†’ Sort u} {motive_3 : Lean.Widget.StrictOrLazy (Array (Lean.Widget.TaggedText Lean.Widget.MsgEmbed)) (Lean.Server.WithRpcRef Lean.Widget.LazyTraceChildren) β†’ Sort u} {motive_4 : Array (Lean.Widget.TaggedText Lean.Widget.MsgEmbed) β†’ Sort u} {motive_5 : List (Lean.Widget.TaggedText Lean.Widget.MsgEmbed) β†’ Sort u} (t : Array (Lean.Widget.TaggedText Lean.Widget.MsgEmbed)) (F_1 : (t : Lean.Widget.MsgEmbed) β†’ t.below β†’ motive_1 t) (F_2 : (t : Lean.Widget.TaggedText Lean.Widget.MsgEmbed) β†’ Lean.Widget.MsgEmbed.below_1 t β†’ motive_2 t) (F_3 : (t : Lean.Widget.StrictOrLazy (Array (Lean.Widget.TaggedText Lean.Widget.MsgEmbed)) (Lean.Server.WithRpcRef Lean.Widget.LazyTraceChildren)) β†’ Lean.Widget.MsgEmbed.below_2 t β†’ motive_3 t) (F_4 : (t : Array (Lean.Widget.TaggedText Lean.Widget.MsgEmbed)) β†’ Lean.Widget.MsgEmbed.below_3 t β†’ motive_4 t) (F_5 : (t : List (Lean.Widget.TaggedText Lean.Widget.MsgEmbed)) β†’ Lean.Widget.MsgEmbed.below_4 t β†’ motive_5 t), Lean.Widget.MsgEmbed.brecOn_3 t F_1 F_2 F_3 F_4 F_5 = F_4 t (Lean.Widget.MsgEmbed.brecOn_3.go t F_1 F_2 F_3 F_4 F_5).2
ProbabilityTheory.Kernel.instIsFiniteKernelWithDensityRnDeriv
Mathlib.Probability.Kernel.RadonNikodym
βˆ€ {Ξ± : Type u_1} {Ξ³ : Type u_2} {mΞ± : MeasurableSpace Ξ±} {mΞ³ : MeasurableSpace Ξ³} {ΞΊ Ξ· : ProbabilityTheory.Kernel Ξ± Ξ³} [hΞ±Ξ³ : MeasurableSpace.CountableOrCountablyGenerated Ξ± Ξ³] [hΞΊ : ProbabilityTheory.IsFiniteKernel ΞΊ] [inst : ProbabilityTheory.IsFiniteKernel Ξ·], ProbabilityTheory.IsFiniteKernel (Ξ·.withDensity (ΞΊ.rnDeriv Ξ·))
contDiffAt_fun_id
Mathlib.Analysis.Calculus.ContDiff.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type uE} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {n : WithTop β„•βˆž} {x : E}, ContDiffAt π•œ n (fun x => x) x
TopCat.GlueData.recOn
Mathlib.Topology.Gluing
{motive : TopCat.GlueData β†’ Sort u} β†’ (t : TopCat.GlueData) β†’ ((toGlueData : CategoryTheory.GlueData TopCat) β†’ (f_open : βˆ€ (i j : toGlueData.J), Topology.IsOpenEmbedding ⇑(CategoryTheory.ConcreteCategory.hom (toGlueData.f i j))) β†’ motive { toGlueData := toGlueData, f_open := f_open }) β†’ motive t
NonUnitalSubringClass.toNonUnitalNonAssocRing._proof_2
Mathlib.RingTheory.NonUnitalSubring.Defs
βˆ€ {R : Type u_2} {S : Type u_1} [inst : NonUnitalNonAssocRing R] [inst_1 : SetLike S R] [hSR : NonUnitalSubringClass S R], ZeroMemClass S R
_private.Mathlib.Combinatorics.Additive.FreimanHom.0.isMulFreimanIso_two._simp_1_1
Mathlib.Combinatorics.Additive.FreimanHom
βˆ€ {Ξ± : Type u_1} {s : Multiset Ξ±}, (s.card = 2) = βˆƒ x y, s = {x, y}
ModuleCat.instModuleCarrierMkOfSMul'._proof_3
Mathlib.Algebra.Category.ModuleCat.Basic
βˆ€ {R : Type u_2} [inst : Ring R] {A : AddCommGrpCat} (Ο† : R β†’+* CategoryTheory.End A) (x x_1 : R) (x_2 : ↑(ModuleCat.mkOfSMul' Ο†)), (x + x_1) β€’ x_2 = x β€’ x_2 + x_1 β€’ x_2
GrpTypeEquivalenceGrp.functor
Mathlib.CategoryTheory.Monoidal.Internal.Types.Grp_
CategoryTheory.Functor (CategoryTheory.Grp (Type u)) GrpCat
Aesop.RuleTac.ofTacticSyntax
Aesop.RuleTac.Basic
(Aesop.RuleTacInput β†’ Lean.MetaM Lean.Syntax.Tactic) β†’ Aesop.RuleTac
ZMod.val.eq_2
Mathlib.Data.ZMod.Basic
βˆ€ (n : β„•), ZMod.val = Fin.val
_private.Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Enums.0.Lean.Elab.Tactic.BVDecide.Frontend.Normalize.PostProcessState.recOn
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Enums
{motive : Lean.Elab.Tactic.BVDecide.Frontend.Normalize.PostProcessState✝ β†’ Sort u} β†’ (t : Lean.Elab.Tactic.BVDecide.Frontend.Normalize.PostProcessState✝¹) β†’ ((hyps : Array Lean.Meta.Hypothesis) β†’ (seen : Std.HashSet Lean.Expr) β†’ motive { hyps := hyps, seen := seen }) β†’ motive t
MeasureTheory.Integrable.aefinStronglyMeasurable
Mathlib.MeasureTheory.Function.StronglyMeasurable.Lp
βˆ€ {Ξ± : Type u_1} {G : Type u_2} {m0 : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} [inst : NormedAddCommGroup G] {f : Ξ± β†’ G}, MeasureTheory.Integrable f ΞΌ β†’ MeasureTheory.AEFinStronglyMeasurable f ΞΌ
Function.Injective.cancelCommMonoid._proof_3
Mathlib.Algebra.Group.InjSurj
βˆ€ {M₁ : Type u_1} {Mβ‚‚ : Type u_2} [inst : Mul M₁] [inst_1 : One M₁] [inst_2 : Pow M₁ β„•] [inst_3 : CancelCommMonoid Mβ‚‚] (f : M₁ β†’ Mβ‚‚) (hf : Function.Injective f) (one : f 1 = 1) (mul : βˆ€ (x y : M₁), f (x * y) = f x * f y) (npow : βˆ€ (x : M₁) (n : β„•), f (x ^ n) = f x ^ n) (x : M₁), Monoid.npow 0 x = 1
Subalgebra.map_topologicalClosure_le
Mathlib.Topology.Algebra.Algebra
βˆ€ {R : Type u_1} [inst : CommSemiring R] {A : Type u_2} [inst_1 : Semiring A] [inst_2 : TopologicalSpace A] {B : Type u_3} [inst_3 : Semiring B] [inst_4 : TopologicalSpace B] [inst_5 : Algebra R A] [inst_6 : Algebra R B] [inst_7 : IsTopologicalSemiring A] [inst_8 : IsTopologicalSemiring B] (f : A β†’A[R] B) (s : Subalgebra R A), Subalgebra.map (↑f) s.topologicalClosure ≀ (Subalgebra.map f.toAlgHom s).topologicalClosure
Int.gcd_dvd_gcd_mul_right_right
Init.Data.Int.Gcd
βˆ€ (a b c : β„€), a.gcd b ∣ a.gcd (b * c)
Plausible.Shrinkable.mk._flat_ctor
Plausible.Sampleable
{Ξ± : Type u} β†’ (Ξ± β†’ List Ξ±) β†’ Plausible.Shrinkable Ξ±
MeasureTheory.JordanDecomposition.instSMul
Mathlib.MeasureTheory.VectorMeasure.Decomposition.Jordan
{Ξ± : Type u_1} β†’ [inst : MeasurableSpace Ξ±] β†’ SMul NNReal (MeasureTheory.JordanDecomposition Ξ±)
Finset.sum_Ioc_by_parts
Mathlib.Algebra.BigOperators.Module
βˆ€ {R : Type u_1} {M : Type u_2} [inst : Ring R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] (f : β„• β†’ R) (g : β„• β†’ M) {m n : β„•}, m < n β†’ βˆ‘ i ∈ Finset.Ioc m n, f i β€’ g i = f n β€’ βˆ‘ i ∈ Finset.range (n + 1), g i - f (m + 1) β€’ βˆ‘ i ∈ Finset.range (m + 1), g i - βˆ‘ i ∈ Finset.Ioc m (n - 1), (f (i + 1) - f i) β€’ βˆ‘ i ∈ Finset.range (i + 1), g i
SetTheory.PGame.nimZeroRelabelling
Mathlib.SetTheory.Game.Nim
(SetTheory.PGame.nim 0).Relabelling 0
CompleteLinearOrder.toCompletelyDistribLattice
Mathlib.Order.CompleteBooleanAlgebra
{Ξ± : Type u} β†’ [CompleteLinearOrder Ξ±] β†’ CompletelyDistribLattice Ξ±
_private.Init.Data.Array.Lemmas.0.Array.all_eq_true_iff_forall_mem._simp_1_3
Init.Data.Array.Lemmas
βˆ€ {Ξ± : Type u} {a : Ξ±} {as : Array Ξ±}, (a ∈ as) = (a ∈ as.toList)
Lean.Meta.Tactic.TryThis.addSuggestion
Lean.Meta.Tactic.TryThis
Lean.Syntax β†’ Lean.Meta.Tactic.TryThis.Suggestion β†’ optParam (Option Lean.Syntax) none β†’ optParam String "Try this:" β†’ optParam (Option String) none β†’ optParam Lean.Meta.Hint.DiffGranularity Lean.Meta.Hint.DiffGranularity.none β†’ Lean.CoreM Unit
Std.Rcc.eq_succMany?_of_toList_eq_append_cons
Init.Data.Range.Polymorphic.Lemmas
βˆ€ {Ξ± : Type u} {r : Std.Rcc Ξ±} [inst : LE Ξ±] [inst_1 : DecidableLE Ξ±] [inst_2 : Std.PRange.UpwardEnumerable Ξ±] [inst_3 : Std.PRange.LawfulUpwardEnumerable Ξ±] [inst_4 : Std.PRange.LawfulUpwardEnumerableLE Ξ±] [inst_5 : Std.Rxc.IsAlwaysFinite Ξ±] {pref suff : List Ξ±} {cur : Ξ±} (h : r.toList = pref ++ cur :: suff), cur = (Std.PRange.succMany? pref.length r.lower).get β‹―
CategoryTheory.Comon.Mon_OpOpToComonObj
Mathlib.CategoryTheory.Monoidal.Comon_
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ [inst_1 : CategoryTheory.MonoidalCategory C] β†’ CategoryTheory.Mon Cα΅’α΅– β†’ CategoryTheory.Comon C
List.modify.eq_1
Init.Data.List.Impl
βˆ€ {Ξ± : Type u} (l : List Ξ±) (i : β„•) (f : Ξ± β†’ Ξ±), l.modify i f = l.modifyTailIdx i (List.modifyHead f)
HeytAlg.mk.noConfusion
Mathlib.Order.Category.HeytAlg
{P : Sort u} β†’ {carrier : Type u_1} β†’ {str : HeytingAlgebra carrier} β†’ {carrier' : Type u_1} β†’ {str' : HeytingAlgebra carrier'} β†’ { carrier := carrier, str := str } = { carrier := carrier', str := str' } β†’ (carrier = carrier' β†’ str ≍ str' β†’ P) β†’ P
_private.Mathlib.Analysis.SpecialFunctions.Pow.NNReal.0.ENNReal.one_lt_rpow._simp_1_1
Mathlib.Analysis.SpecialFunctions.Pow.NNReal
βˆ€ {p : NNReal}, (1 < ↑p) = (1 < p)
Equiv.Perm.IsThreeCycle.inv_iff
Mathlib.GroupTheory.Perm.Cycle.Type
βˆ€ {Ξ± : Type u_1} [inst : Fintype Ξ±] [inst_1 : DecidableEq Ξ±] {f : Equiv.Perm Ξ±}, f⁻¹.IsThreeCycle ↔ f.IsThreeCycle
le_iff_exists_sup
Mathlib.Order.Lattice
βˆ€ {Ξ± : Type u} [inst : SemilatticeSup Ξ±] {a b : Ξ±}, a ≀ b ↔ βˆƒ c, b = a βŠ” c
_private.Batteries.Data.String.Lemmas.0.String.Legacy.Iterator.ValidFor.valid.match_1_1
Batteries.Data.String.Lemmas
βˆ€ {l r : List Char} (motive : (x : String.Legacy.Iterator) β†’ String.Legacy.Iterator.ValidFor l r x β†’ Prop) (x : String.Legacy.Iterator) (x_1 : String.Legacy.Iterator.ValidFor l r x), (βˆ€ (a : Unit), motive { s := String.ofList (l.reverseAux r), i := { byteIdx := String.utf8Len l } } β‹―) β†’ motive x x_1
Lean.Elab.Command.PreElabHeaderResult.mk.injEq
Lean.Elab.MutualInductive
βˆ€ (view : Lean.Elab.Command.InductiveView) (levelNames : List Lean.Name) (numParams : β„•) (type : Lean.Expr) (origParams : Array Lean.Expr) (view_1 : Lean.Elab.Command.InductiveView) (levelNames_1 : List Lean.Name) (numParams_1 : β„•) (type_1 : Lean.Expr) (origParams_1 : Array Lean.Expr), ({ view := view, levelNames := levelNames, numParams := numParams, type := type, origParams := origParams } = { view := view_1, levelNames := levelNames_1, numParams := numParams_1, type := type_1, origParams := origParams_1 }) = (view = view_1 ∧ levelNames = levelNames_1 ∧ numParams = numParams_1 ∧ type = type_1 ∧ origParams = origParams_1)
WeakFEPair._sizeOf_inst
Mathlib.NumberTheory.LSeries.AbstractFuncEq
(E : Type u_1) β†’ {inst : NormedAddCommGroup E} β†’ {inst_1 : NormedSpace β„‚ E} β†’ [SizeOf E] β†’ SizeOf (WeakFEPair E)
_private.Mathlib.Analysis.Asymptotics.AsymptoticEquivalent.0.Asymptotics.IsEquivalent.smul._simp_1_9
Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
βˆ€ {R : Type u_1} [inst : AddMonoidWithOne R] [CharZero R] (n : β„•), (↑n + 1 = 0) = False
Filter.lift_neBot_iff
Mathlib.Order.Filter.Lift
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Filter Ξ±} {g : Set Ξ± β†’ Filter Ξ²}, Monotone g β†’ ((f.lift g).NeBot ↔ βˆ€ s ∈ f, (g s).NeBot)
MonadFinally.casesOn
Init.Control.Except
{m : Type u β†’ Type v} β†’ {motive : MonadFinally m β†’ Sort u_1} β†’ (t : MonadFinally m) β†’ ((tryFinally' : {Ξ± Ξ² : Type u} β†’ m Ξ± β†’ (Option Ξ± β†’ m Ξ²) β†’ m (Ξ± Γ— Ξ²)) β†’ motive { tryFinally' := tryFinally' }) β†’ motive t
Std.ExtDHashMap.insert.congr_simp
Std.Data.ExtDHashMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {x : BEq Ξ±} {x_1 : Hashable Ξ±} [inst : EquivBEq Ξ±] [inst_1 : LawfulHashable Ξ±] (m m_1 : Std.ExtDHashMap Ξ± Ξ²), m = m_1 β†’ βˆ€ (a : Ξ±) (b b_1 : Ξ² a), b = b_1 β†’ m.insert a b = m_1.insert a b_1
Batteries.RBNode.any
Batteries.Data.RBMap.Basic
{Ξ± : Type u_1} β†’ (Ξ± β†’ Bool) β†’ Batteries.RBNode Ξ± β†’ Bool
_private.Mathlib.RingTheory.Jacobson.Ideal.0.Ideal.mem_jacobson_iff.match_1_5
Mathlib.RingTheory.Jacobson.Ideal
βˆ€ {R : Type u_1} [inst : Ring R] {I : Ideal R} {x : R} (y : R) (motive : (βˆƒ M, M.IsMaximal ∧ I βŠ” Ideal.span {y * x + 1} ≀ M) β†’ Prop) (x_1 : βˆƒ M, M.IsMaximal ∧ I βŠ” Ideal.span {y * x + 1} ≀ M), (βˆ€ (M : Ideal R) (hm1 : M.IsMaximal) (hm2 : I βŠ” Ideal.span {y * x + 1} ≀ M), motive β‹―) β†’ motive x_1
Ideal.comap_idₐ
Mathlib.RingTheory.Ideal.Maps
βˆ€ {R : Type u_3} {S : Type u_4} [inst : CommSemiring R] [inst_1 : Semiring S] [inst_2 : Algebra R S] (I : Ideal S), Ideal.comap (AlgHom.id R S) I = I
MeasureTheory.AEEqFun.coeFn_sup
Mathlib.MeasureTheory.Function.AEEqFun
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} [inst_1 : TopologicalSpace Ξ²] [inst_2 : SemilatticeSup Ξ²] [inst_3 : ContinuousSup Ξ²] (f g : Ξ± β†’β‚˜[ΞΌ] Ξ²), ↑(f βŠ” g) =ᡐ[ΞΌ] fun x => ↑f x βŠ” ↑g x
USize.toNat_ofNatTruncate_of_le
Init.Data.UInt.Lemmas
βˆ€ {n : β„•}, USize.size ≀ n β†’ (USize.ofNatTruncate n).toNat = USize.size - 1
ZNum.cmp.match_1
Mathlib.Data.Num.Basic
(motive : ZNum β†’ ZNum β†’ Sort u_1) β†’ (x x_1 : ZNum) β†’ (Unit β†’ motive ZNum.zero ZNum.zero) β†’ ((a b : PosNum) β†’ motive (ZNum.pos a) (ZNum.pos b)) β†’ ((a b : PosNum) β†’ motive (ZNum.neg a) (ZNum.neg b)) β†’ ((a : PosNum) β†’ (x : ZNum) β†’ motive (ZNum.pos a) x) β†’ ((a : PosNum) β†’ (x : ZNum) β†’ motive (ZNum.neg a) x) β†’ ((x : ZNum) β†’ (a : PosNum) β†’ motive x (ZNum.pos a)) β†’ ((x : ZNum) β†’ (a : PosNum) β†’ motive x (ZNum.neg a)) β†’ motive x x_1
Lean.Expr.mvar
Lean.Expr
Lean.MVarId β†’ Lean.Expr
Multiset.rec._proof_1
Mathlib.Data.Multiset.ZeroCons
βˆ€ {Ξ± : Type u_2} {C : Multiset Ξ± β†’ Sort u_1} (C_cons : (a : Ξ±) β†’ (m : Multiset Ξ±) β†’ C m β†’ C (a ::β‚˜ m)) {a : Ξ±} {l l' : List Ξ±} {b : C ⟦l⟧} {b' : C ⟦l'⟧}, l.Perm l' β†’ b ≍ b' β†’ C_cons a ⟦l⟧ b ≍ C_cons a ⟦l'⟧ b'
Lean.Meta.SimpTheorems
Lean.Meta.Tactic.Simp.SimpTheorems
Type
DFA.casesOn
Mathlib.Computability.DFA
{Ξ± : Type u} β†’ {Οƒ : Type v} β†’ {motive : DFA Ξ± Οƒ β†’ Sort u_1} β†’ (t : DFA Ξ± Οƒ) β†’ ((step : Οƒ β†’ Ξ± β†’ Οƒ) β†’ (start : Οƒ) β†’ (accept : Set Οƒ) β†’ motive { step := step, start := start, accept := accept }) β†’ motive t
FreeAbelianGroup.lift_add_apply
Mathlib.GroupTheory.FreeAbelianGroup
βˆ€ {Ξ± : Type u} {G : Type u_1} [inst : AddCommGroup G] (f g : Ξ± β†’ G) (a : FreeAbelianGroup Ξ±), (FreeAbelianGroup.lift (f + g)) a = (FreeAbelianGroup.lift f) a + (FreeAbelianGroup.lift g) a
_private.Mathlib.Lean.Meta.RefinedDiscrTree.Encode.0.Lean.Meta.RefinedDiscrTree.getStackEntries.isIgnoredArg.match_1
Mathlib.Lean.Meta.RefinedDiscrTree.Encode
(motive : Lean.BinderInfo β†’ Sort u_1) β†’ (binderInfo : Lean.BinderInfo) β†’ (Unit β†’ motive Lean.BinderInfo.instImplicit) β†’ (Unit β†’ motive Lean.BinderInfo.implicit) β†’ (Unit β†’ motive Lean.BinderInfo.strictImplicit) β†’ (Unit β†’ motive Lean.BinderInfo.default) β†’ motive binderInfo
Submodule.module'._proof_1
Mathlib.Algebra.Module.Submodule.Defs
βˆ€ {S : Type u_3} {R : Type u_2} {M : Type u_1} [inst : Semiring R] [inst_1 : AddCommMonoid M] {module_M : Module R M} (p : Submodule R M) [inst_2 : Semiring S] [inst_3 : SMul S R] [inst_4 : Module S M] [inst_5 : IsScalarTower S R M] (x : β†₯p.toSubMulAction), 1 β€’ x = x
_private.Lean.DocString.Markdown.0.Lean.Doc.trimLeft.go.match_1
Lean.DocString.Markdown
{i : Type u_1} β†’ (motive : String Γ— Lean.Doc.Inline i β†’ Sort u_2) β†’ (x : String Γ— Lean.Doc.Inline i) β†’ ((pre : String) β†’ (post : Lean.Doc.Inline i) β†’ motive (pre, post)) β†’ motive x
Matrix.toBilin_comp
Mathlib.LinearAlgebra.Matrix.BilinearForm
βˆ€ {R₁ : Type u_1} {M₁ : Type u_2} [inst : CommSemiring R₁] [inst_1 : AddCommMonoid M₁] [inst_2 : Module R₁ M₁] {n : Type u_5} {o : Type u_6} [inst_3 : Fintype n] [inst_4 : Fintype o] [inst_5 : DecidableEq n] (b : Module.Basis n R₁ M₁) {Mβ‚‚' : Type u_7} [inst_6 : AddCommMonoid Mβ‚‚'] [inst_7 : Module R₁ Mβ‚‚'] (c : Module.Basis o R₁ Mβ‚‚') [inst_8 : DecidableEq o] (M : Matrix n n R₁) (P Q : Matrix n o R₁), ((Matrix.toBilin b) M).comp ((Matrix.toLin c b) P) ((Matrix.toLin c b) Q) = (Matrix.toBilin c) (P.transpose * M * Q)
CategoryTheory.Functor.obj.instComonObj._proof_3
Mathlib.CategoryTheory.Monoidal.Comon_
βˆ€ {C : Type u_4} [inst : CategoryTheory.Category.{u_3, u_4} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type u_2} [inst_2 : CategoryTheory.Category.{u_1, u_2} D] [inst_3 : CategoryTheory.MonoidalCategory D] (A : C) [inst_4 : CategoryTheory.ComonObj A] (F : CategoryTheory.Functor C D) [inst_5 : F.OplaxMonoidal], CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp (F.map CategoryTheory.ComonObj.comul) (CategoryTheory.Functor.OplaxMonoidal.Ξ΄ F A A)) (CategoryTheory.MonoidalCategoryStruct.whiskerLeft (F.obj A) (CategoryTheory.CategoryStruct.comp (F.map CategoryTheory.ComonObj.comul) (CategoryTheory.Functor.OplaxMonoidal.Ξ΄ F A A))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp (F.map CategoryTheory.ComonObj.comul) (CategoryTheory.Functor.OplaxMonoidal.Ξ΄ F A A)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight (CategoryTheory.CategoryStruct.comp (F.map CategoryTheory.ComonObj.comul) (CategoryTheory.Functor.OplaxMonoidal.Ξ΄ F A A)) (F.obj A)) (CategoryTheory.MonoidalCategoryStruct.associator (F.obj A) (F.obj A) (F.obj A)).hom)
Fintype.expect_equiv
Mathlib.Algebra.BigOperators.Expect
βˆ€ {ΞΉ : Type u_1} {ΞΊ : Type u_2} {M : Type u_3} [inst : Fintype ΞΉ] [inst_1 : Fintype ΞΊ] [inst_2 : AddCommMonoid M] [inst_3 : Module β„šβ‰₯0 M] (e : ΞΉ ≃ ΞΊ) (f : ΞΉ β†’ M) (g : ΞΊ β†’ M), (βˆ€ (i : ΞΉ), f i = g (e i)) β†’ (Finset.univ.expect fun i => f i) = Finset.univ.expect fun i => g i
Turing.PartrecToTM2.Cont'.halt.elim
Mathlib.Computability.TMToPartrec
{motive : Turing.PartrecToTM2.Cont' β†’ Sort u} β†’ (t : Turing.PartrecToTM2.Cont') β†’ t.ctorIdx = 0 β†’ motive Turing.PartrecToTM2.Cont'.halt β†’ motive t
Except.emoji
Batteries.Lean.Except
{Ξ΅ : Type u_1} β†’ {Ξ± : Type u_2} β†’ Except Ξ΅ Ξ± β†’ String
Subring.coe_prod
Mathlib.Algebra.Ring.Subring.Basic
βˆ€ {R : Type u} {S : Type v} [inst : Ring R] [inst_1 : Ring S] (s : Subring R) (t : Subring S), ↑(s.prod t) = ↑s Γ—Λ’ ↑t
ZMod.val.eq_1
Mathlib.Data.ZMod.Basic
ZMod.val = Int.natAbs
_private.Mathlib.Util.SleepHeartbeats.0._aux_Mathlib_Util_SleepHeartbeats___elabRules_tacticSleep_heartbeats__1.match_1
Mathlib.Util.SleepHeartbeats
(motive : Option β„• β†’ Sort u_1) β†’ (x : Option β„•) β†’ (Unit β†’ motive none) β†’ ((m : β„•) β†’ motive (some m)) β†’ motive x
StarAlgebra.elemental.instCompleteSpaceSubtypeMemStarSubalgebra
Mathlib.Topology.Algebra.StarSubalgebra
βˆ€ (R : Type u_1) [inst : CommSemiring R] [inst_1 : StarRing R] {A : Type u_4} [inst_2 : UniformSpace A] [CompleteSpace A] [inst_4 : Semiring A] [inst_5 : StarRing A] [inst_6 : IsTopologicalSemiring A] [inst_7 : ContinuousStar A] [inst_8 : Algebra R A] [inst_9 : StarModule R A] (x : A), CompleteSpace β†₯(StarAlgebra.elemental R x)
QuasiErgodic.smul_measure
Mathlib.Dynamics.Ergodic.Ergodic
βˆ€ {Ξ± : Type u_1} {m : MeasurableSpace Ξ±} {f : Ξ± β†’ Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} {R : Type u_2} [inst : SMul R ENNReal] [inst_1 : IsScalarTower R ENNReal ENNReal], QuasiErgodic f ΞΌ β†’ βˆ€ (c : R), QuasiErgodic f (c β€’ ΞΌ)
SkewMonoidAlgebra.coeff_one_one
Mathlib.Algebra.SkewMonoidAlgebra.Basic
βˆ€ {k : Type u_1} {G : Type u_2} [inst : One G] [inst_1 : AddMonoidWithOne k], SkewMonoidAlgebra.coeff 1 1 = 1
Std.ExtDTreeMap.Const.contains_alter
Std.Data.ExtDTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {Ξ² : Type v} {t : Std.ExtDTreeMap Ξ± (fun x => Ξ²) cmp} [inst : Std.TransCmp cmp] {k k' : Ξ±} {f : Option Ξ² β†’ Option Ξ²}, (Std.ExtDTreeMap.Const.alter t k f).contains k' = if cmp k k' = Ordering.eq then (f (Std.ExtDTreeMap.Const.get? t k)).isSome else t.contains k'
ContinuousLinearEquiv.map_nhds_eq
Mathlib.Topology.Algebra.Module.Equiv
βˆ€ {R₁ : Type u_1} {Rβ‚‚ : Type u_2} [inst : Semiring R₁] [inst_1 : Semiring Rβ‚‚] {σ₁₂ : R₁ β†’+* Rβ‚‚} {σ₂₁ : Rβ‚‚ β†’+* R₁} [inst_2 : RingHomInvPair σ₁₂ σ₂₁] [inst_3 : RingHomInvPair σ₂₁ σ₁₂] {M₁ : Type u_4} [inst_4 : TopologicalSpace M₁] [inst_5 : AddCommMonoid M₁] {Mβ‚‚ : Type u_5} [inst_6 : TopologicalSpace Mβ‚‚] [inst_7 : AddCommMonoid Mβ‚‚] [inst_8 : Module R₁ M₁] [inst_9 : Module Rβ‚‚ Mβ‚‚] (e : M₁ ≃SL[σ₁₂] Mβ‚‚) (x : M₁), Filter.map (⇑e) (nhds x) = nhds (e x)
Matrix.PosDef.posDef_sqrt
Mathlib.Analysis.Matrix.Order
βˆ€ {π•œ : Type u_1} {n : Type u_2} [inst : RCLike π•œ] [inst_1 : Fintype n] [inst_2 : DecidableEq n] {M : Matrix n n π•œ}, M.PosDef β†’ (CFC.sqrt M).PosDef
_private.Lean.Meta.Tactic.Grind.CasesMatch.0.Lean.Meta.Grind.casesMatch.mkMotiveAndRefls
Lean.Meta.Tactic.Grind.CasesMatch
Lean.MVarId β†’ Lean.Expr β†’ Lean.Meta.MatcherApp β†’ Lean.MetaM (Lean.Expr Γ— Array Lean.Expr)
Set.monotone_mem._simp_1
Mathlib.Order.UpperLower.Basic
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] {s : Set Ξ±}, (Monotone fun x => x ∈ s) = IsUpperSet s
Nat.or_mod_two_pow
Init.Data.Nat.Bitwise.Lemmas
βˆ€ {a b n : β„•}, (a ||| b) % 2 ^ n = a % 2 ^ n ||| b % 2 ^ n
Nat.log_eq_iff
Mathlib.Data.Nat.Log
βˆ€ {b m n : β„•}, m β‰  0 ∨ 1 < b ∧ n β‰  0 β†’ (Nat.log b n = m ↔ b ^ m ≀ n ∧ n < b ^ (m + 1))
_private.Mathlib.Algebra.Lie.Sl2.0.IsSl2Triple.HasPrimitiveVectorWith.pow_toEnd_f_ne_zero_of_eq_nat._simp_1_1
Mathlib.Algebra.Lie.Sl2
βˆ€ {Ξ± : Type u} [inst : AddCommMonoid Ξ±] [Subsingleton (AddUnits Ξ±)] {a b : Ξ±}, (a + b = 0) = (a = 0 ∧ b = 0)
SeparationQuotient.instCommGroup._proof_9
Mathlib.Topology.Algebra.SeparationQuotient.Basic
βˆ€ {G : Type u_1} [inst : TopologicalSpace G] [inst_1 : CommGroup G] [inst_2 : IsTopologicalGroup G] (x : G) (n : β„€), SeparationQuotient.mk (x ^ n) = SeparationQuotient.mk x ^ n
Ordinal.zero_CNF
Mathlib.SetTheory.Ordinal.CantorNormalForm
βˆ€ {o : Ordinal.{u_1}}, o β‰  0 β†’ Ordinal.CNF 0 o = [(0, o)]
isNilpotent_iff_zero_mem_powers
Mathlib.RingTheory.Nilpotent.Lemmas
βˆ€ {R : Type u_1} [inst : Monoid R] [inst_1 : Zero R] {x : R}, IsNilpotent x ↔ 0 ∈ Submonoid.powers x
Lean.Grind.OrderedRing.mul_pos
Init.Grind.Ordered.Ring
βˆ€ {R : Type u} [inst : Lean.Grind.Ring R] [inst_1 : LE R] [inst_2 : LT R] [inst_3 : Std.IsPreorder R] [Lean.Grind.OrderedRing R] {a b : R}, 0 < a β†’ 0 < b β†’ 0 < a * b
false_of_ne
Init.Core
βˆ€ {Ξ± : Sort u} {a : Ξ±}, a β‰  a β†’ False
OpenNormalAddSubgroup.instLatticeOfContinuousAdd._proof_3
Mathlib.Topology.Algebra.OpenSubgroup
βˆ€ {G : Type u_1} [inst : AddGroup G] [inst_1 : TopologicalSpace G] [inst_2 : ContinuousAdd G] (a b c : OpenNormalAddSubgroup G), a ≀ c β†’ b ≀ c β†’ SemilatticeSup.sup a b ≀ c
TopCat.GlueData._sizeOf_1
Mathlib.Topology.Gluing
TopCat.GlueData β†’ β„•
_private.Mathlib.CategoryTheory.Monoidal.Preadditive.0.CategoryTheory.rightDistributor_assoc._simp_1_2
Mathlib.CategoryTheory.Monoidal.Preadditive
βˆ€ {C : Type u} [π’ž : CategoryTheory.Category.{v, u} C] [inst : CategoryTheory.MonoidalCategory C] {W X Y Z : C} (f : W ⟢ X) (g : X ⟢ Y), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom f (CategoryTheory.CategoryStruct.id Z)) (CategoryTheory.MonoidalCategoryStruct.tensorHom g (CategoryTheory.CategoryStruct.id Z)) = CategoryTheory.MonoidalCategoryStruct.tensorHom (CategoryTheory.CategoryStruct.comp f g) (CategoryTheory.CategoryStruct.id Z)
CategoryTheory.Limits.ReflectsFilteredColimits
Mathlib.CategoryTheory.Limits.Preserves.Filtered
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ {D : Type uβ‚‚} β†’ [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] β†’ CategoryTheory.Functor C D β†’ Prop
hasFDerivAt_iff_tendsto
Mathlib.Analysis.Calculus.FDeriv.Basic
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] {f : E β†’ F} {f' : E β†’L[π•œ] F} {x : E}, HasFDerivAt f f' x ↔ Filter.Tendsto (fun x' => β€–x' - x‖⁻¹ * β€–f x' - f x - f' (x' - x)β€–) (nhds x) (nhds 0)
Aesop.Strategy.noConfusion
Aesop.Options.Public
{P : Sort v✝} β†’ {x y : Aesop.Strategy} β†’ x = y β†’ Aesop.Strategy.noConfusionType P x y
SymmetricPower.mk._proof_2
Mathlib.LinearAlgebra.TensorPower.Symmetric
βˆ€ (R ΞΉ : Type u_1) [inst : CommSemiring R] (M : Type u_2) [inst_1 : AddCommMonoid M] [inst_2 : Module R M] (x : R) (x_1 : PiTensorProduct R fun x => M), (↑(addConGen (SymmetricPower.Rel R ΞΉ M)).mk').toFun (x β€’ x_1) = (↑(addConGen (SymmetricPower.Rel R ΞΉ M)).mk').toFun (x β€’ x_1)
Lean.Parser.Command.grindPattern._regBuiltin.Lean.Parser.Command.GrindCnstr.isValue.formatter_7
Lean.Meta.Tactic.Grind.Parser
IO Unit
_private.Init.Data.BitVec.Bitblast.0.BitVec.resRec_of_clz_le._proof_1_1
Init.Data.BitVec.Bitblast
βˆ€ {w : β„•} {x : BitVec w} {y : BitVec w}, 1 < w β†’ Β¬w - 1 - y.clz.toNat ≀ w - 1 β†’ False
CategoryTheory.GradedObject.total
Mathlib.CategoryTheory.GradedObject
(Ξ² : Type) β†’ (C : Type u) β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ [CategoryTheory.Limits.HasCoproducts C] β†’ CategoryTheory.Functor (CategoryTheory.GradedObject Ξ² C) C
CategoryTheory.Limits.colimit.pre
Mathlib.CategoryTheory.Limits.HasLimits
{J : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} J] β†’ {K : Type uβ‚‚} β†’ [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} K] β†’ {C : Type u} β†’ [inst_2 : CategoryTheory.Category.{v, u} C] β†’ (F : CategoryTheory.Functor J C) β†’ [inst_3 : CategoryTheory.Limits.HasColimit F] β†’ (E : CategoryTheory.Functor K J) β†’ [inst_4 : CategoryTheory.Limits.HasColimit (E.comp F)] β†’ CategoryTheory.Limits.colimit (E.comp F) ⟢ CategoryTheory.Limits.colimit F
Std.Time.OffsetX.hourMinute.elim
Std.Time.Format.Basic
{motive : Std.Time.OffsetX β†’ Sort u} β†’ (t : Std.Time.OffsetX) β†’ t.ctorIdx = 1 β†’ motive Std.Time.OffsetX.hourMinute β†’ motive t
Rat.toNNRat_le_toNNRat_iff._simp_1
Mathlib.Data.NNRat.Defs
βˆ€ {p q : β„š}, 0 ≀ p β†’ (q.toNNRat ≀ p.toNNRat) = (q ≀ p)
SetTheory.PGame.Impartial.equiv_zero_iff_le
Mathlib.SetTheory.Game.Impartial
βˆ€ (G : SetTheory.PGame) [G.Impartial], G β‰ˆ 0 ↔ G ≀ 0
HomotopicalAlgebra.PathObject.instIsCofibrantPOfIsVeryGood
Mathlib.AlgebraicTopology.ModelCategory.PathObject
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {A : C} [inst_1 : HomotopicalAlgebra.CategoryWithWeakEquivalences C] (P : HomotopicalAlgebra.PathObject A) [inst_2 : HomotopicalAlgebra.CategoryWithFibrations C] [inst_3 : HomotopicalAlgebra.CategoryWithCofibrations C] [(HomotopicalAlgebra.cofibrations C).IsStableUnderComposition] [inst_5 : CategoryTheory.Limits.HasBinaryProduct A A] [inst_6 : CategoryTheory.Limits.HasInitial C] [HomotopicalAlgebra.IsCofibrant A] [P.IsVeryGood], HomotopicalAlgebra.IsCofibrant P.P
MLList.thunk
Batteries.Data.MLList.Basic
{m : Type u_1 β†’ Type u_1} β†’ {Ξ± : Type u_1} β†’ (Unit β†’ MLList m Ξ±) β†’ MLList m Ξ±
Std.ExtDTreeMap.Const.get?_insertMany_list.match_1
Std.Data.ExtDTreeMap.Lemmas
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ (motive : Ξ± Γ— Ξ² β†’ Sort u_3) β†’ (x : Ξ± Γ— Ξ²) β†’ ((a : Ξ±) β†’ (b : Ξ²) β†’ motive (a, b)) β†’ motive x
Int32.toNatClampNeg_ofNat_of_lt
Init.Data.SInt.Lemmas
βˆ€ {n : β„•}, n < 2 ^ 31 β†’ (Int32.ofNat n).toNatClampNeg = n
Std.DTreeMap.Internal.Impl.insertMany._proof_1
Std.Data.DTreeMap.Internal.Operations
βˆ€ {Ξ± : Type u_1} {Ξ² : Ξ± β†’ Type u_2} [inst : Ord Ξ±] (t : Std.DTreeMap.Internal.Impl Ξ± Ξ²), t.Balanced β†’ βˆ€ (r : t.IteratedInsertionInto), (↑r).Balanced
IsGalois.of_card_aut_eq_finrank
Mathlib.FieldTheory.Galois.Basic
βˆ€ (F : Type u_1) [inst : Field F] (E : Type u_2) [inst_1 : Field E] [inst_2 : Algebra F E] [FiniteDimensional F E], Nat.card Gal(E/F) = Module.finrank F E β†’ IsGalois F E
Ideal.rootsOfUnityMapQuot._proof_2
Mathlib.NumberTheory.NumberField.Ideal.Basic
βˆ€ {K : Type u_1} [inst : Field K] (I : Ideal (NumberField.RingOfIntegers K)), I.IsTwoSided
Finset.empty_covBy_singleton._simp_1
Mathlib.Data.Finset.Grade
βˆ€ {Ξ± : Type u_1} (a : Ξ±), (βˆ… β‹– {a}) = True
Polynomial.aroots_C_mul
Mathlib.Algebra.Polynomial.Roots
βˆ€ {S : Type v} {T : Type w} [inst : CommRing T] [inst_1 : CommRing S] [inst_2 : IsDomain S] [inst_3 : Algebra T S] [NoZeroSMulDivisors T S] {a : T} (p : Polynomial T), a β‰  0 β†’ (Polynomial.C a * p).aroots S = p.aroots S
Mathlib.Tactic.Ring.evalPowNat._unsafe_rec
Mathlib.Tactic.Ring.Basic
{u : Lean.Level} β†’ {Ξ± : Q(Type u)} β†’ (sΞ± : Q(CommSemiring Β«$Ξ±Β»)) β†’ {a : Q(Β«$Ξ±Β»)} β†’ Mathlib.Tactic.Ring.ExSum sΞ± a β†’ (n : Q(β„•)) β†’ Lean.MetaM (Mathlib.Tactic.Ring.Result (Mathlib.Tactic.Ring.ExSum sΞ±) q(Β«$aΒ» ^ Β«$nΒ»))
_private.Init.Data.Array.OfFn.0.Array.ofFn.go.eq_2
Init.Data.Array.OfFn
βˆ€ {Ξ± : Type u} {n : β„•} (f : Fin n β†’ Ξ±) (acc : Array Ξ±) (x_2 : 0 ≀ n), Array.ofFn.go✝ f acc 0 x_2 = acc
BotHom.dual_id
Mathlib.Order.Hom.Bounded
βˆ€ {Ξ± : Type u_2} [inst : LE Ξ±] [inst_1 : OrderBot Ξ±], BotHom.dual (BotHom.id Ξ±) = TopHom.id Ξ±α΅’α΅ˆ