name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
List.head_takeWhile
Init.Data.List.TakeDrop
βˆ€ {Ξ± : Type u_1} {p : Ξ± β†’ Bool} {l : List Ξ±} (w : List.takeWhile p l β‰  []), (List.takeWhile p l).head w = l.head β‹―
StructureGroupoid.LocalInvariantProp.liftPropWithinAt_of_liftPropAt
Mathlib.Geometry.Manifold.LocalInvariantProperties
βˆ€ {H : Type u_1} {M : Type u_2} {H' : Type u_3} {M' : Type u_4} [inst : TopologicalSpace H] [inst_1 : TopologicalSpace M] [inst_2 : ChartedSpace H M] [inst_3 : TopologicalSpace H'] [inst_4 : TopologicalSpace M'] [inst_5 : ChartedSpace H' M'] {P : (H β†’ H') β†’ Set H β†’ H β†’ Prop} {g : M β†’ M'} {s : Set M} {x : M}, (βˆ€ ⦃s : Set H⦄ ⦃x : H⦄ ⦃t : Set H⦄ ⦃f : H β†’ H'⦄, t βŠ† s β†’ P f s x β†’ P f t x) β†’ ChartedSpace.LiftPropAt P g x β†’ ChartedSpace.LiftPropWithinAt P g s x
Scott.IsOpen.inter
Mathlib.Topology.OmegaCompletePartialOrder
βˆ€ (Ξ± : Type u) [inst : OmegaCompletePartialOrder Ξ±] (s t : Set Ξ±), Scott.IsOpen Ξ± s β†’ Scott.IsOpen Ξ± t β†’ Scott.IsOpen Ξ± (s ∩ t)
OrderIso.toGaloisInsertion._proof_1
Mathlib.Order.GaloisConnection.Basic
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_1} [inst : Preorder Ξ±] [inst_1 : Preorder Ξ²] (e : Ξ± ≃o Ξ²) (g : Ξ²), g ≀ e (e.symm g)
Fin2.fs.injEq
Mathlib.Data.Fin.Fin2
βˆ€ {n : β„•} (a a_1 : Fin2 n), (a.fs = a_1.fs) = (a = a_1)
Array.getElem_zero_filterMap._proof_1
Init.Data.Array.Find
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_1} {f : Ξ± β†’ Option Ξ²} {xs : Array Ξ±}, 0 < (Array.filterMap f xs).size β†’ (Array.findSome? f xs).isSome = true
_private.Mathlib.LinearAlgebra.Eigenspace.Pi.0.Module.End.independent_iInf_maxGenEigenspace_of_forall_mapsTo._simp_1_3
Mathlib.LinearAlgebra.Eigenspace.Pi
βˆ€ {Ξ± : Type u_1} {ΞΉ : Type u_3} [inst : Lattice Ξ±] [inst_1 : OrderBot Ξ±] {s : Finset ΞΉ} {f : ΞΉ β†’ Ξ±} [inst_2 : DecidableEq ΞΉ], s.SupIndep f = βˆ€ i ∈ s, Disjoint (f i) ((s.erase i).sup f)
Finset.right_eq_union
Mathlib.Data.Finset.Lattice.Basic
βˆ€ {Ξ± : Type u_1} [inst : DecidableEq Ξ±] {s t : Finset Ξ±}, s = t βˆͺ s ↔ t βŠ† s
IsPrimitiveRoot.norm_pow_sub_one_of_prime_pow_ne_two
Mathlib.NumberTheory.Cyclotomic.PrimitiveRoots
βˆ€ {p : β„•} {K : Type u} {L : Type v} [inst : Field L] {ΞΆ : L} [inst_1 : Field K] [inst_2 : Algebra K L] {k s : β„•}, IsPrimitiveRoot ΞΆ (p ^ (k + 1)) β†’ βˆ€ [hpri : Fact (Nat.Prime p)] [IsCyclotomicExtension {p ^ (k + 1)} K L], Irreducible (Polynomial.cyclotomic (p ^ (k + 1)) K) β†’ s ≀ k β†’ p ^ (k - s + 1) β‰  2 β†’ (Algebra.norm K) (ΞΆ ^ p ^ s - 1) = ↑p ^ p ^ s
_private.Lean.Elab.AutoBound.0.Lean.Elab.checkValidAutoBoundImplicitName._sparseCasesOn_1
Lean.Elab.AutoBound
{motive : Lean.Name β†’ Sort u} β†’ (t : Lean.Name) β†’ ((pre : Lean.Name) β†’ (str : String) β†’ motive (pre.str str)) β†’ (Nat.hasNotBit 2 t.ctorIdx β†’ motive t) β†’ motive t
Matrix.subsingleton_of_empty_left
Mathlib.LinearAlgebra.Matrix.Defs
βˆ€ {m : Type u_2} {n : Type u_3} {Ξ± : Type v} [IsEmpty m], Subsingleton (Matrix m n Ξ±)
OrthonormalBasis.det_to_matrix_orthonormalBasis_of_same_orientation
Mathlib.Analysis.InnerProductSpace.Orientation
βˆ€ {E : Type u_1} [inst : NormedAddCommGroup E] [inst_1 : InnerProductSpace ℝ E] {ΞΉ : Type u_2} [inst_2 : Fintype ΞΉ] [inst_3 : DecidableEq ΞΉ] (e f : OrthonormalBasis ΞΉ ℝ E), e.toBasis.orientation = f.toBasis.orientation β†’ e.toBasis.det ⇑f = 1
Vector.insertIdx._proof_2
Init.Data.Vector.Basic
βˆ€ {Ξ± : Type u_1} {n : β„•} (xs : Vector Ξ± n), βˆ€ i ≀ n, i ≀ xs.toArray.size
MonomialOrder.degLex_single_le_iff
Mathlib.Data.Finsupp.MonomialOrder.DegLex
βˆ€ {Οƒ : Type u_2} [inst : LinearOrder Οƒ] [inst_1 : WellFoundedGT Οƒ] {a b : Οƒ}, ((MonomialOrder.degLex.toSyn funβ‚€ | a => 1) ≀ MonomialOrder.degLex.toSyn funβ‚€ | b => 1) ↔ b ≀ a
CategoryTheory.Limits.WidePushout.hom_eq_desc._proof_1
Mathlib.CategoryTheory.Limits.Shapes.WidePullbacks
βˆ€ {J : Type u_3} {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {B : C} {objs : J β†’ C} (arrows : (j : J) β†’ B ⟢ objs j) [inst_1 : CategoryTheory.Limits.HasWidePushout B objs arrows] {X : C} (g : CategoryTheory.Limits.widePushout B objs arrows ⟢ X) (j : J), CategoryTheory.CategoryStruct.comp (arrows j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.WidePushout.ΞΉ arrows j) g) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.WidePushout.head arrows) g
_private.Lean.Meta.Tactic.Grind.EMatchTheorem.0.Lean.Meta.Grind.mkEMatchTheoremWithKind?.go.match_1
Lean.Meta.Tactic.Grind.EMatchTheorem
(motive : Option (List Lean.Expr Γ— List Lean.HeadIndex) β†’ Sort u_1) β†’ (__discr : Option (List Lean.Expr Γ— List Lean.HeadIndex)) β†’ ((patterns : List Lean.Expr) β†’ (symbols : List Lean.HeadIndex) β†’ motive (some (patterns, symbols))) β†’ ((x : Option (List Lean.Expr Γ— List Lean.HeadIndex)) β†’ motive x) β†’ motive __discr
BddDistLat.hom_ext
Mathlib.Order.Category.BddDistLat
βˆ€ {X Y : BddDistLat} {f g : X ⟢ Y}, BddDistLat.Hom.hom f = BddDistLat.Hom.hom g β†’ f = g
AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec
Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme
{A : Type u_1} β†’ {Οƒ : Type u_2} β†’ [inst : CommRing A] β†’ [inst_1 : SetLike Οƒ A] β†’ [inst_2 : AddSubgroupClass Οƒ A] β†’ (π’œ : β„• β†’ Οƒ) β†’ [inst_3 : GradedRing π’œ] β†’ (f : A) β†’ ↑((AlgebraicGeometry.Proj.toLocallyRingedSpace π’œ).restrict β‹―).toPresheafedSpace ⟢ ↑(AlgebraicGeometry.Spec.locallyRingedSpaceObj { carrier := HomogeneousLocalization.Away π’œ f, commRing := HomogeneousLocalization.homogeneousLocalizationCommRing }).toPresheafedSpace
Mathlib.Meta.FunProp.MaybeFunctionData.recOn
Mathlib.Tactic.FunProp.FunctionData
{motive : Mathlib.Meta.FunProp.MaybeFunctionData β†’ Sort u} β†’ (t : Mathlib.Meta.FunProp.MaybeFunctionData) β†’ ((f : Lean.Expr) β†’ motive (Mathlib.Meta.FunProp.MaybeFunctionData.letE f)) β†’ ((f : Lean.Expr) β†’ motive (Mathlib.Meta.FunProp.MaybeFunctionData.lam f)) β†’ ((fData : Mathlib.Meta.FunProp.FunctionData) β†’ motive (Mathlib.Meta.FunProp.MaybeFunctionData.data fData)) β†’ motive t
Lean.Elab.Tactic.EvalTacticFailure.rec
Lean.Elab.Tactic.Basic
{motive : Lean.Elab.Tactic.EvalTacticFailure β†’ Sort u} β†’ ((exception : Lean.Exception) β†’ (state : Lean.Elab.Tactic.SavedState) β†’ motive { exception := exception, state := state }) β†’ (t : Lean.Elab.Tactic.EvalTacticFailure) β†’ motive t
Lean.Doc.Syntax.linebreak
Lean.DocString.Syntax
Lean.ParserDescr
CliffordAlgebra.instStarRing._proof_3
Mathlib.LinearAlgebra.CliffordAlgebra.Star
βˆ€ {R : Type u_1} [inst : CommRing R] {M : Type u_2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] {Q : QuadraticForm R M} (x y : CliffordAlgebra Q), CliffordAlgebra.reverse (CliffordAlgebra.involute (x + y)) = CliffordAlgebra.reverse (CliffordAlgebra.involute x) + CliffordAlgebra.reverse (CliffordAlgebra.involute y)
Lean.Meta.Grind.propagateMatchCondDown._regBuiltin.Lean.Meta.Grind.propagateMatchCondDown.declare_1._@.Lean.Meta.Tactic.Grind.MatchCond.2992396906._hygCtx._hyg.8
Lean.Meta.Tactic.Grind.MatchCond
IO Unit
Representation.single_smul
Mathlib.RepresentationTheory.Basic
βˆ€ {k : Type u_1} {G : Type u_2} {V : Type u_3} [inst : CommSemiring k] [inst_1 : Monoid G] [inst_2 : AddCommMonoid V] [inst_3 : Module k V] (ρ : Representation k G V) (t : k) (g : G) (v : ρ.asModule), MonoidAlgebra.single g t β€’ v = t β€’ (ρ g) (ρ.asModuleEquiv v)
CategoryTheory.LocalizerMorphism.homMap_apply_assoc
Mathlib.CategoryTheory.Localization.HomEquiv
βˆ€ {C₁ : Type u_2} {Cβ‚‚ : Type u_3} {D₁ : Type u_5} {Dβ‚‚ : Type u_6} [inst : CategoryTheory.Category.{v_2, u_2} C₁] [inst_1 : CategoryTheory.Category.{v_3, u_3} Cβ‚‚] [inst_2 : CategoryTheory.Category.{v_5, u_5} D₁] [inst_3 : CategoryTheory.Category.{v_6, u_6} Dβ‚‚] {W₁ : CategoryTheory.MorphismProperty C₁} {Wβ‚‚ : CategoryTheory.MorphismProperty Cβ‚‚} (Ξ¦ : CategoryTheory.LocalizerMorphism W₁ Wβ‚‚) (L₁ : CategoryTheory.Functor C₁ D₁) [inst_4 : L₁.IsLocalization W₁] (Lβ‚‚ : CategoryTheory.Functor Cβ‚‚ Dβ‚‚) [inst_5 : Lβ‚‚.IsLocalization Wβ‚‚] {X Y : C₁} (G : CategoryTheory.Functor D₁ Dβ‚‚) (e : Ξ¦.functor.comp Lβ‚‚ β‰… L₁.comp G) (f : L₁.obj X ⟢ L₁.obj Y) {Z : Dβ‚‚} (h : Lβ‚‚.obj (Ξ¦.functor.obj Y) ⟢ Z), CategoryTheory.CategoryStruct.comp (Ξ¦.homMap L₁ Lβ‚‚ f) h = CategoryTheory.CategoryStruct.comp (e.hom.app X) (CategoryTheory.CategoryStruct.comp (G.map f) (CategoryTheory.CategoryStruct.comp (e.inv.app Y) h))
_private.Init.Data.List.Sort.Impl.0.List.MergeSort.Internal.mergeSortTRβ‚‚.eq_1
Init.Data.List.Sort.Impl
βˆ€ {Ξ± : Type u_1} (l : List Ξ±) (le : Ξ± β†’ Ξ± β†’ Bool), List.MergeSort.Internal.mergeSortTRβ‚‚ l le = List.MergeSort.Internal.mergeSortTRβ‚‚.run✝ le ⟨l, β‹―βŸ©
Bool.atLeastTwo_false_left
Init.Data.BitVec.Bitblast
βˆ€ {b c : Bool}, false.atLeastTwo b c = (b && c)
List.pairwise_lt_finRange
Batteries.Data.List.Lemmas
βˆ€ (n : β„•), List.Pairwise (fun x1 x2 => x1 < x2) (List.finRange n)
CommGrpCat.Forgetβ‚‚.createsLimit._proof_12
Mathlib.Algebra.Category.Grp.Limits
βˆ€ {J : Type u_3} [inst : CategoryTheory.Category.{u_1, u_3} J] (F : CategoryTheory.Functor J CommGrpCat) (this : Small.{u_2, max u_2 u_3} ↑(F.comp (CategoryTheory.forget CommGrpCat)).sections) (this_1 : Small.{u_2, max u_2 u_3} ↑((F.comp ((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat))).comp (CategoryTheory.forget MonCat)).sections) (s : CategoryTheory.Limits.Cone F), ((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat)).map { hom' := { toFun := fun v => EquivLike.coe (equivShrink ↑((F.comp ((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat))).comp (CategoryTheory.forget MonCat)).sections) ⟨fun j => ((CategoryTheory.forget MonCat).mapCone (((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat)).mapCone s)).Ο€.app j v, β‹―βŸ©, map_one' := β‹―, map_mul' := β‹― } } = ((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat)).map { hom' := { toFun := fun v => EquivLike.coe (equivShrink ↑((F.comp ((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat))).comp (CategoryTheory.forget MonCat)).sections) ⟨fun j => ((CategoryTheory.forget MonCat).mapCone (((CategoryTheory.forgetβ‚‚ CommGrpCat GrpCat).comp (CategoryTheory.forgetβ‚‚ GrpCat MonCat)).mapCone s)).Ο€.app j v, β‹―βŸ©, map_one' := β‹―, map_mul' := β‹― } }
meromorphicOrderAt_const_intCast
Mathlib.Analysis.Meromorphic.Order
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] (zβ‚€ : π•œ) (n : β„€) [inst_1 : Decidable (↑n = 0)], meromorphicOrderAt (↑n) zβ‚€ = if ↑n = 0 then ⊀ else 0
Fintype.sum_neg_iff_of_nonpos
Mathlib.Algebra.Order.BigOperators.Group.Finset
βˆ€ {ΞΉ : Type u_1} {M : Type u_4} [inst : Fintype ΞΉ] [inst_1 : AddCommMonoid M] [inst_2 : PartialOrder M] [IsOrderedCancelAddMonoid M] {f : ΞΉ β†’ M}, f ≀ 0 β†’ (βˆ‘ i, f i < 0 ↔ f < 0)
Std.Tactic.BVDecide.Gate.eval.eq_4
Std.Tactic.BVDecide.Bitblast.BoolExpr.Basic
Std.Tactic.BVDecide.Gate.or.eval = fun x1 x2 => x1 || x2
_private.Mathlib.Data.Multiset.Fintype.0.Multiset.instFintypeElemProdNatSetOfLtSndCountFst._simp_10
Mathlib.Data.Multiset.Fintype
βˆ€ {a b : Prop}, (a ∧ b ↔ b) = (b β†’ a)
Lean.Meta.Grind.AC.addTermOpId
Lean.Meta.Tactic.Grind.AC.Util
Lean.Expr β†’ Lean.Meta.Grind.AC.ACM Unit
SimpleGraph.isSubgraph_eq_le
Mathlib.Combinatorics.SimpleGraph.Basic
βˆ€ {V : Type u}, SimpleGraph.IsSubgraph = fun x1 x2 => x1 ≀ x2
Std.Internal.List.getValueCast?_modifyKey_self
Std.Data.Internal.List.Associative
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} [inst : BEq Ξ±] [inst_1 : LawfulBEq Ξ±] {k : Ξ±} {f : Ξ² k β†’ Ξ² k} (l : List ((a : Ξ±) Γ— Ξ² a)), Std.Internal.List.DistinctKeys l β†’ Std.Internal.List.getValueCast? k (Std.Internal.List.modifyKey k f l) = Option.map f (Std.Internal.List.getValueCast? k l)
Submodule.adjoint_orthogonalProjection
Mathlib.Analysis.InnerProductSpace.Adjoint
βˆ€ {π•œ : Type u_1} {E : Type u_2} [inst : RCLike π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] [inst_3 : CompleteSpace E] (U : Submodule π•œ E) [inst_4 : CompleteSpace β†₯U], ContinuousLinearMap.adjoint U.orthogonalProjection = U.subtypeL
MonoidHom.coe_of_map_div
Mathlib.Algebra.Group.Hom.Basic
βˆ€ {G : Type u_5} [inst : Group G] {H : Type u_8} [inst_1 : Group H] (f : G β†’ H) (hf : βˆ€ (x y : G), f (x / y) = f x / f y), ⇑(MonoidHom.ofMapDiv f hf) = f
Std.Tactic.BVDecide.BVExpr.Return.recOn
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Expr
{aig : Std.Sat.AIG Std.Tactic.BVDecide.BVBit} β†’ {w : β„•} β†’ {motive : Std.Tactic.BVDecide.BVExpr.Return aig w β†’ Sort u} β†’ (t : Std.Tactic.BVDecide.BVExpr.Return aig w) β†’ ((result : aig.ExtendingRefVecEntry w) β†’ (cache : Std.Tactic.BVDecide.BVExpr.Cache (↑result).aig) β†’ motive { result := result, cache := cache }) β†’ motive t
_private.Mathlib.Data.Finset.Range.0.notMemRangeEquiv._proof_2
Mathlib.Data.Finset.Range
βˆ€ (k j : β„•), k + j βˆ‰ Finset.range k
MulZeroMemClass.isCancelMulZero
Mathlib.Algebra.GroupWithZero.Submonoid.CancelMulZero
βˆ€ {Mβ‚€ : Type u_1} [inst : Mul Mβ‚€] [inst_1 : Zero Mβ‚€] {S : Type u_2} [inst_2 : SetLike S Mβ‚€] [inst_3 : MulMemClass S Mβ‚€] [inst_4 : ZeroMemClass S Mβ‚€] (s : S) [IsCancelMulZero Mβ‚€], IsCancelMulZero β†₯s
_private.Mathlib.Topology.Algebra.AsymptoticCone.0.AffineSpace.nhds_bind_asymptoticNhds._simp_1_1
Mathlib.Topology.Algebra.AsymptoticCone
βˆ€ {Ξ± : Type u_1} {f g : Filter Ξ±}, (f ≀ g) = βˆ€ x ∈ g, x ∈ f
Filter.pureAddMonoidHom
Mathlib.Order.Filter.Pointwise
{Ξ± : Type u_2} β†’ [inst : AddZeroClass Ξ±] β†’ Ξ± β†’+ Filter Ξ±
CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition_assoc
Mathlib.CategoryTheory.Enriched.FunctorCategory
βˆ€ (V : Type u₁) [inst : CategoryTheory.Category.{v₁, u₁} V] [inst_1 : CategoryTheory.MonoidalCategory V] {C : Type uβ‚‚} [inst_2 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} C] {J : Type u₃} [inst_3 : CategoryTheory.Category.{v₃, u₃} J] [inst_4 : CategoryTheory.EnrichedOrdinaryCategory V C] (F₁ Fβ‚‚ : CategoryTheory.Functor J C) [inst_5 : CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₁ Fβ‚‚] {i j : J} (f : i ⟢ j) {Z : V} (h : (F₁.obj i ⟢[V] Fβ‚‚.obj j) ⟢ Z), CategoryTheory.CategoryStruct.comp (CategoryTheory.Enriched.FunctorCategory.enrichedHomΟ€ V F₁ Fβ‚‚ i) (CategoryTheory.CategoryStruct.comp (CategoryTheory.eHomWhiskerLeft V (F₁.obj i) (Fβ‚‚.map f)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Enriched.FunctorCategory.enrichedHomΟ€ V F₁ Fβ‚‚ j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.eHomWhiskerRight V (F₁.map f) (Fβ‚‚.obj j)) h)
MeasureTheory.sdiff_addFundamentalFrontier
Mathlib.MeasureTheory.Group.FundamentalDomain
βˆ€ (G : Type u_1) {Ξ± : Type u_3} [inst : AddGroup G] [inst_1 : AddAction G Ξ±] (s : Set Ξ±), s \ MeasureTheory.addFundamentalFrontier G s = MeasureTheory.addFundamentalInterior G s
Stream'.homomorphism
Mathlib.Data.Stream.Init
βˆ€ {Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β†’ Ξ²) (a : Ξ±), Stream'.pure f βŠ› Stream'.pure a = Stream'.pure (f a)
_private.Mathlib.Geometry.RingedSpace.LocallyRingedSpace.ResidueField.0.AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_iff_forall_evaluation_eq_zero._simp_1_1
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.ResidueField
βˆ€ {Ξ± : Sort u} {p : Ξ± β†’ Prop} {q : { a // p a } β†’ Prop}, (βˆ€ (x : { a // p a }), q x) = βˆ€ (a : Ξ±) (b : p a), q ⟨a, b⟩
DFinsupp.nonempty_neLocus_iff
Mathlib.Data.DFinsupp.NeLocus
βˆ€ {Ξ± : Type u_1} {N : Ξ± β†’ Type u_2} [inst : DecidableEq Ξ±] [inst_1 : (a : Ξ±) β†’ DecidableEq (N a)] [inst_2 : (a : Ξ±) β†’ Zero (N a)] {f g : Ξ β‚€ (a : Ξ±), N a}, (f.neLocus g).Nonempty ↔ f β‰  g
Module.mapEvalEquiv._proof_1
Mathlib.LinearAlgebra.Dual.Defs
βˆ€ (R : Type u_1) [inst : CommSemiring R], RingHomSurjective (RingHom.id R)
Num.instOrOp
Mathlib.Data.Num.Bitwise
OrOp Num
AlgebraicGeometry.StructureSheaf.const_apply
Mathlib.AlgebraicGeometry.StructureSheaf
βˆ€ (R : Type u) [inst : CommRing R] (f g : R) (U : TopologicalSpace.Opens ↑(AlgebraicGeometry.PrimeSpectrum.Top R)) (hu : βˆ€ x ∈ U, g ∈ x.asIdeal.primeCompl) (x : β†₯U), ↑(AlgebraicGeometry.StructureSheaf.const R f g U hu) x = IsLocalization.mk' (Localization.AtPrime (↑x).asIdeal) f ⟨g, β‹―βŸ©
Submodule.mem_toAffineSubspace._simp_1
Mathlib.LinearAlgebra.AffineSpace.AffineSubspace.Defs
βˆ€ {k : Type u_1} {V : Type u_2} [inst : Ring k] [inst_1 : AddCommGroup V] [inst_2 : Module k V] {p : Submodule k V} {x : V}, (x ∈ p.toAffineSubspace) = (x ∈ p)
Lean.Meta.SolveByElim.SolveByElimConfig.testSolutions
Lean.Meta.Tactic.SolveByElim
optParam Lean.Meta.SolveByElim.SolveByElimConfig { } β†’ (List Lean.Expr β†’ Lean.MetaM Bool) β†’ Lean.Meta.SolveByElim.SolveByElimConfig
CategoryTheory.MorphismProperty.pushout_inl
Mathlib.CategoryTheory.MorphismProperty.Limits
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] {A B A' : C} (f : A ⟢ A') (g : A ⟢ B) [inst_2 : CategoryTheory.Limits.HasPushout f g], P g β†’ P (CategoryTheory.Limits.pushout.inl f g)
ContinuousSemilinearEquivClass.map_continuous
Mathlib.Topology.Algebra.Module.Equiv
βˆ€ {F : Type u_1} {R : outParam (Type u_2)} {S : outParam (Type u_3)} {inst : Semiring R} {inst_1 : Semiring S} {Οƒ : outParam (R β†’+* S)} {Οƒ' : outParam (S β†’+* R)} {inst_2 : RingHomInvPair Οƒ Οƒ'} {inst_3 : RingHomInvPair Οƒ' Οƒ} {M : outParam (Type u_4)} {inst_4 : TopologicalSpace M} {inst_5 : AddCommMonoid M} {Mβ‚‚ : outParam (Type u_5)} {inst_6 : TopologicalSpace Mβ‚‚} {inst_7 : AddCommMonoid Mβ‚‚} {inst_8 : Module R M} {inst_9 : Module S Mβ‚‚} {inst_10 : EquivLike F M Mβ‚‚} [self : ContinuousSemilinearEquivClass F Οƒ M Mβ‚‚] (f : F), Continuous ⇑f
CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_Ο„β‚‚
Mathlib.Algebra.Homology.ShortComplex.FunctorEquivalence
βˆ€ (J : Type u_1) (C : Type u_2) [inst : CategoryTheory.Category.{v_1, u_1} J] [inst_1 : CategoryTheory.Category.{v_2, u_2} C] [inst_2 : CategoryTheory.Limits.HasZeroMorphisms C] {X Y : CategoryTheory.Functor J (CategoryTheory.ShortComplex C)} (Ο† : X ⟢ Y), ((CategoryTheory.ShortComplex.FunctorEquivalence.inverse J C).map Ο†).Ο„β‚‚ = CategoryTheory.Functor.whiskerRight Ο† CategoryTheory.ShortComplex.Ο€β‚‚
Polynomial.cyclotomic_irreducible_pow_of_irreducible_pow
Mathlib.RingTheory.Polynomial.Cyclotomic.Expand
βˆ€ {p : β„•}, Nat.Prime p β†’ βˆ€ {R : Type u_1} [inst : CommRing R] [IsDomain R] {n m : β„•}, m ≀ n β†’ Irreducible (Polynomial.cyclotomic (p ^ n) R) β†’ Irreducible (Polynomial.cyclotomic (p ^ m) R)
_private.Mathlib.Data.Seq.Computation.0.Stream'.cons.match_1.eq_2
Mathlib.Data.Seq.Computation
βˆ€ (motive : β„• β†’ Sort u_1) (n : β„•) (h_1 : Unit β†’ motive 0) (h_2 : (n : β„•) β†’ motive n.succ), (match n.succ with | 0 => h_1 () | n.succ => h_2 n) = h_2 n
Lean.Name.componentsRev._sunfold
Lean.Data.Name
Lean.Name β†’ List Lean.Name
PartialEquiv.image_symm_image_of_subset_target
Mathlib.Logic.Equiv.PartialEquiv
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} (e : PartialEquiv Ξ± Ξ²) {s : Set Ξ²}, s βŠ† e.target β†’ ↑e '' (↑e.symm '' s) = s
DistLat.Iso.mk._proof_2
Mathlib.Order.Category.DistLat
βˆ€ {Ξ± Ξ² : DistLat} (e : ↑α ≃o ↑β), CategoryTheory.CategoryStruct.comp (DistLat.ofHom { toFun := ⇑e, map_sup' := β‹―, map_inf' := β‹― }) (DistLat.ofHom { toFun := ⇑e.symm, map_sup' := β‹―, map_inf' := β‹― }) = CategoryTheory.CategoryStruct.id Ξ±
instCoeTCAddEquivOfAddEquivClass
Mathlib.Algebra.Group.Equiv.Defs
{F : Type u_1} β†’ {Ξ± : Type u_2} β†’ {Ξ² : Type u_3} β†’ [inst : EquivLike F Ξ± Ξ²] β†’ [inst_1 : Add Ξ±] β†’ [inst_2 : Add Ξ²] β†’ [AddEquivClass F Ξ± Ξ²] β†’ CoeTC F (Ξ± ≃+ Ξ²)
DistribLattice.ofInfSupLe._proof_2
Mathlib.Order.Lattice
βˆ€ {Ξ± : Type u_1} [inst : Lattice Ξ±] (inf_sup_le : βˆ€ (a b c : Ξ±), a βŠ“ (b βŠ” c) ≀ a βŠ“ b βŠ” a βŠ“ c) (a b : Ξ±α΅’α΅ˆα΅’α΅ˆ), Lattice.inf a b ≀ b
_private.Std.Data.DTreeMap.Internal.Model.0.Std.DTreeMap.Internal.Impl.maxView.match_1.splitter
Std.Data.DTreeMap.Internal.Model
{Ξ± : Type u_1} β†’ {Ξ² : Ξ± β†’ Type u_2} β†’ (l : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ (motive : (r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ r.Balanced β†’ Std.DTreeMap.Internal.Impl.BalancedAtRoot l.size r.size β†’ Sort u_3) β†’ (r : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ (hr : r.Balanced) β†’ (hlr : Std.DTreeMap.Internal.Impl.BalancedAtRoot l.size r.size) β†’ ((hr : Std.DTreeMap.Internal.Impl.leaf.Balanced) β†’ (hlr : Std.DTreeMap.Internal.Impl.BalancedAtRoot l.size Std.DTreeMap.Internal.Impl.leaf.size) β†’ motive Std.DTreeMap.Internal.Impl.leaf hr hlr) β†’ ((size : β„•) β†’ (k' : Ξ±) β†’ (v' : Ξ² k') β†’ (l' r' : Std.DTreeMap.Internal.Impl Ξ± Ξ²) β†’ (hr : (Std.DTreeMap.Internal.Impl.inner size k' v' l' r').Balanced) β†’ (hlr : Std.DTreeMap.Internal.Impl.BalancedAtRoot l.size (Std.DTreeMap.Internal.Impl.inner size k' v' l' r').size) β†’ motive (Std.DTreeMap.Internal.Impl.inner size k' v' l' r') hr hlr) β†’ motive r hr hlr
Aesop.UnorderedArraySet.partition
Aesop.Util.UnorderedArraySet
{Ξ± : Type u_1} β†’ [inst : BEq Ξ±] β†’ (Ξ± β†’ Bool) β†’ Aesop.UnorderedArraySet Ξ± β†’ Aesop.UnorderedArraySet Ξ± Γ— Aesop.UnorderedArraySet Ξ±
CategoryTheory.Limits.Trident.ofΞΉ._proof_1
Mathlib.CategoryTheory.Limits.Shapes.WideEqualizers
βˆ€ {J : Type u_3} {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {X Y : C} {f : J β†’ (X ⟢ Y)} [inst_1 : Nonempty J] {P : C} (ΞΉ : P ⟢ X), (βˆ€ (j₁ jβ‚‚ : J), CategoryTheory.CategoryStruct.comp ΞΉ (f j₁) = CategoryTheory.CategoryStruct.comp ΞΉ (f jβ‚‚)) β†’ βˆ€ (i j : CategoryTheory.Limits.WalkingParallelFamily J) (f_1 : i ⟢ j), CategoryTheory.CategoryStruct.comp (((CategoryTheory.Functor.const (CategoryTheory.Limits.WalkingParallelFamily J)).obj P).map f_1) (CategoryTheory.Limits.WalkingParallelFamily.casesOn j ΞΉ (CategoryTheory.CategoryStruct.comp ΞΉ (f (Classical.arbitrary J)))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.WalkingParallelFamily.casesOn i ΞΉ (CategoryTheory.CategoryStruct.comp ΞΉ (f (Classical.arbitrary J)))) ((CategoryTheory.Limits.parallelFamily f).map f_1)
analyticOrderAt_mul_eq_top_of_right
Mathlib.Analysis.Analytic.Order
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {f g : π•œ β†’ π•œ} {zβ‚€ : π•œ}, analyticOrderAt g zβ‚€ = ⊀ β†’ analyticOrderAt (f * g) zβ‚€ = ⊀
_private.Mathlib.Algebra.TrivSqZeroExt.0._aux_Mathlib_Algebra_TrivSqZeroExt___unexpand_TrivSqZeroExt_1
Mathlib.Algebra.TrivSqZeroExt
Lean.PrettyPrinter.Unexpander
_private.Lean.Elab.Quotation.0.Lean.Elab.Term.Quotation.getSepFromSplice._sparseCasesOn_1
Lean.Elab.Quotation
{motive_1 : Lean.Syntax β†’ Sort u} β†’ (t : Lean.Syntax) β†’ ((info : Lean.SourceInfo) β†’ (val : String) β†’ motive_1 (Lean.Syntax.atom info val)) β†’ (Nat.hasNotBit 4 t.ctorIdx β†’ motive_1 t) β†’ motive_1 t
Lean.Lsp.CompletionParams._sizeOf_inst
Lean.Data.Lsp.LanguageFeatures
SizeOf Lean.Lsp.CompletionParams
_private.Mathlib.MeasureTheory.PiSystem.0.piiUnionInter_singleton._simp_1_6
Mathlib.MeasureTheory.PiSystem
βˆ€ {Ξ± : Type u_1} {a b : Ξ±}, (b ∈ {a}) = (b = a)
CliffordAlgebra.ofBaseChange_tmul_one
Mathlib.LinearAlgebra.CliffordAlgebra.BaseChange
βˆ€ {R : Type u_1} (A : Type u_2) {V : Type u_3} [inst : CommRing R] [inst_1 : CommRing A] [inst_2 : AddCommGroup V] [inst_3 : Algebra R A] [inst_4 : Module R V] [inst_5 : Invertible 2] (Q : QuadraticForm R V) (z : A), (CliffordAlgebra.ofBaseChange A Q) (z βŠ—β‚œ[R] 1) = (algebraMap A (CliffordAlgebra (QuadraticForm.baseChange A Q))) z
WithVal
Mathlib.Topology.Algebra.Valued.WithVal
{R : Type u_1} β†’ {Ξ“β‚€ : Type u_2} β†’ [inst : LinearOrderedCommGroupWithZero Ξ“β‚€] β†’ [inst_1 : Ring R] β†’ Valuation R Ξ“β‚€ β†’ Type u_1
Int.add_shiftLeft
Init.Data.Int.Bitwise.Lemmas
βˆ€ (a b : β„€) (n : β„•), (a + b) <<< n = a <<< n + b <<< n
_private.Mathlib.Order.InitialSeg.0.collapseF
Mathlib.Order.InitialSeg
{Ξ± : Type u_1} β†’ {Ξ² : Type u_2} β†’ {r : Ξ± β†’ Ξ± β†’ Prop} β†’ {s : Ξ² β†’ Ξ² β†’ Prop} β†’ [IsWellOrder Ξ² s] β†’ (f : r β†ͺr s) β†’ (a : Ξ±) β†’ { b // Β¬s (f a) b }
TrivSqZeroExt.commRing._proof_8
Mathlib.Algebra.TrivSqZeroExt
βˆ€ {R : Type u_1} {M : Type u_2} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] [inst_3 : Module Rᡐᡒᡖ M] (a : TrivSqZeroExt R M), a * 1 = a
_private.Lean.Meta.Tactic.Grind.AC.Eq.0.Lean.Grind.AC.Seq.findSimpAC?.match_4
Lean.Meta.Tactic.Grind.AC.Eq
(motive : Option (Option (Lean.Meta.Grind.AC.EqCnstr Γ— Lean.Grind.AC.SubsetResult)) β†’ Sort u_1) β†’ (x : Option (Option (Lean.Meta.Grind.AC.EqCnstr Γ— Lean.Grind.AC.SubsetResult))) β†’ (Unit β†’ motive none) β†’ ((a : Option (Lean.Meta.Grind.AC.EqCnstr Γ— Lean.Grind.AC.SubsetResult)) β†’ motive (some a)) β†’ motive x
_private.Mathlib.Analysis.Meromorphic.FactorizedRational.0.MeromorphicOn.extract_zeros_poles_log._simp_1_3
Mathlib.Analysis.Meromorphic.FactorizedRational
βˆ€ {Mβ‚€ : Type u_1} [inst : MulZeroClass Mβ‚€] [NoZeroDivisors Mβ‚€] {a b : Mβ‚€}, (a * b = 0) = (a = 0 ∨ b = 0)
Quiver.FreeGroupoid.quotInv
Mathlib.CategoryTheory.Groupoid.FreeGroupoid
{V : Type u} β†’ [inst : Quiver V] β†’ {X Y : Quiver.FreeGroupoid V} β†’ (X ⟢ Y) β†’ (Y ⟢ X)
AlgebraicGeometry.IsSmoothOfRelativeDimension.exists_isStandardSmoothOfRelativeDimension
Mathlib.AlgebraicGeometry.Morphisms.Smooth
βˆ€ {n : β„•} {X Y : AlgebraicGeometry.Scheme} {f : X ⟢ Y} [self : AlgebraicGeometry.IsSmoothOfRelativeDimension n f] (x : β†₯X), βˆƒ U V, βˆƒ (_ : x ∈ ↑V) (e : ↑V ≀ (TopologicalSpace.Opens.map f.base).obj ↑U), RingHom.IsStandardSmoothOfRelativeDimension n (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appLE f (↑U) (↑V) e))
_private.Mathlib.RingTheory.Spectrum.Prime.FreeLocus.0.Module.rankAtStalk_eq_zero_iff_subsingleton._simp_1_1
Mathlib.RingTheory.Spectrum.Prime.FreeLocus
βˆ€ {Ξ± : Type u} {s : Set Ξ±}, (s = βˆ…) = βˆ€ (x : Ξ±), x βˆ‰ s
List.getElem_pmap
Init.Data.List.Attach
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {p : Ξ± β†’ Prop} (f : (a : Ξ±) β†’ p a β†’ Ξ²) {l : List Ξ±} (h : βˆ€ a ∈ l, p a) {i : β„•} (hn : i < (List.pmap f l h).length), (List.pmap f l h)[i] = f l[i] β‹―
_private.Std.Data.DTreeMap.Internal.Zipper.0.Std.DTreeMap.Internal.Impl.pruneLE.match_1.eq_1
Std.Data.DTreeMap.Internal.Zipper
βˆ€ (motive : Ordering β†’ Sort u_1) (h_1 : Unit β†’ motive Ordering.lt) (h_2 : Unit β†’ motive Ordering.eq) (h_3 : Unit β†’ motive Ordering.gt), (match Ordering.lt with | Ordering.lt => h_1 () | Ordering.eq => h_2 () | Ordering.gt => h_3 ()) = h_1 ()
CategoryTheory.Limits.Fork.IsLimit.homIso._proof_4
Mathlib.CategoryTheory.Limits.Shapes.Equalizers
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {X Y : C} {f g : X ⟢ Y} {t : CategoryTheory.Limits.Fork f g} (ht : CategoryTheory.Limits.IsLimit t) (Z : C) (x : Z ⟢ t.pt), ↑(CategoryTheory.Limits.Fork.IsLimit.lift' ht β†‘βŸ¨CategoryTheory.CategoryStruct.comp x t.ΞΉ, β‹―βŸ© β‹―) = x
CategoryTheory.Limits.cospanCompIso_inv_app_left
Mathlib.CategoryTheory.Limits.Shapes.Pullback.Cospan
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] (F : CategoryTheory.Functor C D) {X Y Z : C} (f : X ⟢ Z) (g : Y ⟢ Z), (CategoryTheory.Limits.cospanCompIso F f g).inv.app CategoryTheory.Limits.WalkingCospan.left = CategoryTheory.CategoryStruct.id ((CategoryTheory.Limits.cospan (F.map f) (F.map g)).obj CategoryTheory.Limits.WalkingCospan.left)
EuclideanGeometry.Sphere.ext_iff
Mathlib.Geometry.Euclidean.Sphere.Basic
βˆ€ {P : Type u_2} {inst : MetricSpace P} {x y : EuclideanGeometry.Sphere P}, x = y ↔ x.center = y.center ∧ x.radius = y.radius
Fin.image_castSucc_Ioi
Mathlib.Order.Interval.Set.Fin
βˆ€ {n : β„•} (i : Fin n), Fin.castSucc '' Set.Ioi i = Set.Ioo i.castSucc (Fin.last n)
_private.Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unital.0.wrapped._proof_1._@.Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unital.1784184353._hygCtx._hyg.8
Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unital
@definition✝ = @definition✝
Lean.PrettyPrinter.OneLine.State.mk._flat_ctor
Lean.PrettyPrinter.Formatter
Std.Format β†’ β„• β†’ List (β„• Γ— Std.Format) β†’ Lean.PrettyPrinter.OneLine.State
lt_sSup_iff
Mathlib.Order.CompleteLattice.Defs
βˆ€ {Ξ± : Type u_1} [inst : CompleteLinearOrder Ξ±] {s : Set Ξ±} {b : Ξ±}, b < sSup s ↔ βˆƒ a ∈ s, b < a
Lean.Compiler.LCNF.Simp.CtorInfo.ctor.inj
Lean.Compiler.LCNF.Simp.DiscrM
βˆ€ {val : Lean.ConstructorVal} {args : Array Lean.Compiler.LCNF.Arg} {val_1 : Lean.ConstructorVal} {args_1 : Array Lean.Compiler.LCNF.Arg}, Lean.Compiler.LCNF.Simp.CtorInfo.ctor val args = Lean.Compiler.LCNF.Simp.CtorInfo.ctor val_1 args_1 β†’ val = val_1 ∧ args = args_1
Std.ExtDTreeMap.getKey_insert_self
Std.Data.ExtDTreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.ExtDTreeMap Ξ± Ξ² cmp} [inst : Std.TransCmp cmp] {k : Ξ±} {v : Ξ² k}, (t.insert k v).getKey k β‹― = k
CategoryTheory.Functor.LaxMonoidal.tensorHom_Ξ΅_comp_ΞΌ_assoc
Mathlib.CategoryTheory.Monoidal.Functor
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] {D : Type uβ‚‚} [inst_2 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] [inst_3 : CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) [inst_4 : F.LaxMonoidal] {X : C} {Y : D} (f : Y ⟢ F.obj X) {Z : D} (h : F.obj (CategoryTheory.MonoidalCategoryStruct.tensorObj X (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)) ⟢ Z), CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom f (CategoryTheory.Functor.LaxMonoidal.Ξ΅ F)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.LaxMonoidal.ΞΌ F X (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight f (CategoryTheory.MonoidalCategoryStruct.tensorUnit D)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.rightUnitor (F.obj X)).hom (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.MonoidalCategoryStruct.rightUnitor X).inv) h))
CategoryTheory.Lax.OplaxTrans.vCompNaturality
Mathlib.CategoryTheory.Bicategory.NaturalTransformation.Lax
{B : Type u₁} β†’ [inst : CategoryTheory.Bicategory B] β†’ {C : Type uβ‚‚} β†’ [inst_1 : CategoryTheory.Bicategory C] β†’ {F G H : CategoryTheory.LaxFunctor B C} β†’ (Ξ· : CategoryTheory.Lax.OplaxTrans F G) β†’ (ΞΈ : CategoryTheory.Lax.OplaxTrans G H) β†’ {a b : B} β†’ (f : a ⟢ b) β†’ CategoryTheory.CategoryStruct.comp (F.map f) (CategoryTheory.CategoryStruct.comp (Ξ·.app b) (ΞΈ.app b)) ⟢ CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp (Ξ·.app a) (ΞΈ.app a)) (H.map f)
Ordering.isEq
Init.Data.Ord.Basic
Ordering β†’ Bool
List.Vector.set._proof_1
Mathlib.Data.Vector.Basic
βˆ€ {Ξ± : Type u_1} {n : β„•} (v : List.Vector Ξ± n) (i : Fin n) (a : Ξ±), ((↑v).set (↑i) a).length = n
CategoryTheory.Subpresheaf.lift.congr_simp
Mathlib.CategoryTheory.Subpresheaf.Image
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {F F' : CategoryTheory.Functor Cα΅’α΅– (Type w)} (f f_1 : F' ⟢ F) (e_f : f = f_1) {G : CategoryTheory.Subpresheaf F} (hf : CategoryTheory.Subpresheaf.range f ≀ G), CategoryTheory.Subpresheaf.lift f hf = CategoryTheory.Subpresheaf.lift f_1 β‹―
_private.Mathlib.Combinatorics.SimpleGraph.Subgraph.0.SimpleGraph.Subgraph.map_mono._simp_1_1
Mathlib.Combinatorics.SimpleGraph.Subgraph
βˆ€ {Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β†’ Ξ²) (s : Set Ξ±) (y : Ξ²), (y ∈ f '' s) = βˆƒ x ∈ s, f x = y
List.ofFn_congr
Mathlib.Data.List.OfFn
βˆ€ {Ξ± : Type u} {m n : β„•} (h : m = n) (f : Fin m β†’ Ξ±), List.ofFn f = List.ofFn fun i => f (Fin.cast β‹― i)
Std.DTreeMap.Raw.self_le_maxKey?_insert
Std.Data.DTreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.DTreeMap.Raw Ξ± Ξ² cmp} [inst : Std.TransCmp cmp] (h : t.WF) {k : Ξ±} {v : Ξ² k} {kmi : Ξ±}, (t.insert k v).maxKey?.get β‹― = kmi β†’ (cmp k kmi).isLE = true