name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
Set.iInterβ‚‚_add_subset
Mathlib.Algebra.Group.Pointwise.Set.Lattice
βˆ€ {Ξ± : Type u_2} {ΞΉ : Sort u_5} {ΞΊ : ΞΉ β†’ Sort u_6} [inst : Add Ξ±] (s : (i : ΞΉ) β†’ ΞΊ i β†’ Set Ξ±) (t : Set Ξ±), (β‹‚ i, β‹‚ j, s i j) + t βŠ† β‹‚ i, β‹‚ j, s i j + t
ciSup_or'
Mathlib.Order.ConditionallyCompleteLattice.Indexed
βˆ€ {Ξ± : Type u_1} [inst : ConditionallyCompleteLinearOrderBot Ξ±] (p q : Prop) (f : p ∨ q β†’ Ξ±), ⨆ (h : p ∨ q), f h = max (⨆ (h : p), f β‹―) (⨆ (h : q), f β‹―)
_private.Lean.Meta.Tactic.Grind.AlphaShareCommon.0.Lean.Meta.Grind.alphaEq.match_16
Lean.Meta.Tactic.Grind.AlphaShareCommon
(motive : Lean.Expr β†’ Sort u_1) β†’ (eβ‚‚ : Lean.Expr) β†’ ((nβ‚‚ : Lean.Name) β†’ (iβ‚‚ : β„•) β†’ (bβ‚‚ : Lean.Expr) β†’ motive (Lean.Expr.proj nβ‚‚ iβ‚‚ bβ‚‚)) β†’ ((x : Lean.Expr) β†’ motive x) β†’ motive eβ‚‚
Fin2.cases'.match_1
Mathlib.Data.Fin.Fin2
{n : β„•} β†’ (motive : Fin2 n.succ β†’ Sort u_1) β†’ (x : Fin2 n.succ) β†’ (Unit β†’ motive Fin2.fz) β†’ ((n_1 : Fin2 n) β†’ motive n_1.fs) β†’ motive x
_private.Lean.Elab.GuardMsgs.0.Lean.Elab.Tactic.GuardMsgs.messageToString._sparseCasesOn_3
Lean.Elab.GuardMsgs
{Ξ± : Type u} β†’ {motive : Option Ξ± β†’ Sort u_1} β†’ (t : Option Ξ±) β†’ ((val : Ξ±) β†’ motive (some val)) β†’ (Nat.hasNotBit 2 t.ctorIdx β†’ motive t) β†’ motive t
FreeAddMonoid.ofList_nil
Mathlib.Algebra.FreeMonoid.Basic
βˆ€ {Ξ± : Type u_1}, FreeAddMonoid.ofList [] = 0
UInt8.ofInt_add
Init.Data.UInt.Lemmas
βˆ€ (x y : β„€), UInt8.ofInt (x + y) = UInt8.ofInt x + UInt8.ofInt y
Lean.Parser.Command.declModifiersF.formatter
Lean.Parser.Command
Lean.PrettyPrinter.Formatter
ComplexShape.instTotalComplexShapeSymmetryIntUp._proof_2
Mathlib.Algebra.Homology.ComplexShapeSigns
βˆ€ (p : β„€) {q iβ‚‚' : β„€}, (ComplexShape.up β„€).Rel q iβ‚‚' β†’ (p * q).negOnePow * (ComplexShape.up β„€).Ξ΅β‚‚ (ComplexShape.up β„€) (ComplexShape.up β„€) (p, q) = (ComplexShape.up β„€).Ρ₁ (ComplexShape.up β„€) (ComplexShape.up β„€) (q, p) * (p * iβ‚‚').negOnePow
_private.Mathlib.Algebra.Lie.Subalgebra.0.LieSubalgebra.toSubmodule_eq_top._simp_1_1
Mathlib.Algebra.Lie.Subalgebra
βˆ€ {R : Type u} {L : Type v} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : LieAlgebra R L] (L₁' Lβ‚‚' : LieSubalgebra R L), (L₁' = Lβ‚‚') = (L₁'.toSubmodule = Lβ‚‚'.toSubmodule)
Algebra.TensorProduct.productLeftAlgHom
Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} β†’ {S : Type uS} β†’ {A : Type uA} β†’ {B : Type uB} β†’ {C : Type uC} β†’ [inst : CommSemiring R] β†’ [inst_1 : CommSemiring S] β†’ [inst_2 : Algebra R S] β†’ [inst_3 : Semiring A] β†’ [inst_4 : Algebra R A] β†’ [inst_5 : Algebra S A] β†’ [inst_6 : IsScalarTower R S A] β†’ [inst_7 : Semiring B] β†’ [inst_8 : Algebra R B] β†’ [inst_9 : CommSemiring C] β†’ [inst_10 : Algebra R C] β†’ [inst_11 : Algebra S C] β†’ [IsScalarTower R S C] β†’ (A →ₐ[S] C) β†’ (B →ₐ[R] C) β†’ TensorProduct R A B →ₐ[S] C
Nat.add_div_eq_of_le_mod_add_mod
Mathlib.Data.Nat.ModEq
βˆ€ {a b c : β„•}, c ≀ a % c + b % c β†’ 0 < c β†’ (a + b) / c = a / c + b / c + 1
CommRingCat.Colimits.instCommRingColimitType._proof_16
Mathlib.Algebra.Category.Ring.Colimits
βˆ€ {J : Type u_1} [inst : CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J CommRingCat) (x : CommRingCat.Colimits.ColimitType F), npowRecAuto 0 x = 1
SimpleGraph.map_adj
Mathlib.Combinatorics.SimpleGraph.Maps
βˆ€ {V : Type u_1} {W : Type u_2} (f : V β†ͺ W) (G : SimpleGraph V) (u v : W), (SimpleGraph.map f G).Adj u v ↔ βˆƒ u' v', G.Adj u' v' ∧ f u' = u ∧ f v' = v
CategoryTheory.Triangulated.TStructure.IsGE.mk._flat_ctor
Mathlib.CategoryTheory.Triangulated.TStructure.Basic
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{v_1, u_1} C] [inst_1 : CategoryTheory.Preadditive C] [inst_2 : CategoryTheory.Limits.HasZeroObject C] [inst_3 : CategoryTheory.HasShift C β„€] [inst_4 : βˆ€ (n : β„€), (CategoryTheory.shiftFunctor C n).Additive] [inst_5 : CategoryTheory.Pretriangulated C] {t : CategoryTheory.Triangulated.TStructure C} {X : C} {n : β„€}, t.ge n X β†’ t.IsGE X n
ProbabilityTheory.Kernel.iIndepFun.indepFun_sum_range_succ
Mathlib.Probability.Independence.Kernel.IndepFun
βˆ€ {Ξ± : Type u_1} {Ξ© : Type u_2} {mΞ± : MeasurableSpace Ξ±} {mΞ© : MeasurableSpace Ξ©} {ΞΊ : ProbabilityTheory.Kernel Ξ± Ξ©} {ΞΌ : MeasureTheory.Measure Ξ±} {Ξ² : Type u_8} {m : MeasurableSpace Ξ²} [inst : AddCommMonoid Ξ²] [MeasurableAddβ‚‚ Ξ²] {f : β„• β†’ Ξ© β†’ Ξ²}, ProbabilityTheory.Kernel.iIndepFun f ΞΊ ΞΌ β†’ (βˆ€ (i : β„•), Measurable (f i)) β†’ βˆ€ (n : β„•), ProbabilityTheory.Kernel.IndepFun (βˆ‘ j ∈ Finset.range n, f j) (f n) ΞΊ ΞΌ
List.toFinsupp
Mathlib.Data.List.ToFinsupp
{M : Type u_1} β†’ [inst : Zero M] β†’ (l : List M) β†’ [DecidablePred fun x => l.getD x 0 β‰  0] β†’ β„• β†’β‚€ M
smul_nonpos_iff_pos_imp_nonpos
Mathlib.Algebra.Order.Module.Defs
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : Ring Ξ±] [inst_1 : LinearOrder Ξ±] [IsStrictOrderedRing Ξ±] [inst_3 : AddCommGroup Ξ²] [inst_4 : LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [inst_6 : Module Ξ± Ξ²] [PosSMulStrictMono Ξ± Ξ²] {a : Ξ±} {b : Ξ²}, a β€’ b ≀ 0 ↔ (0 < a β†’ b ≀ 0) ∧ (b < 0 β†’ 0 ≀ a)
CategoryTheory.Pseudofunctor.mapComp'₀₁₃_hom_assoc
Mathlib.CategoryTheory.Bicategory.Strict.Pseudofunctor
βˆ€ {B : Type u₁} {C : Type uβ‚‚} [inst : CategoryTheory.Bicategory B] [inst_1 : CategoryTheory.Bicategory.Strict B] [inst_2 : CategoryTheory.Bicategory C] (F : CategoryTheory.Pseudofunctor B C) {bβ‚€ b₁ bβ‚‚ b₃ : B} (f₀₁ : bβ‚€ ⟢ b₁) (f₁₂ : b₁ ⟢ bβ‚‚) (f₂₃ : bβ‚‚ ⟢ b₃) (fβ‚€β‚‚ : bβ‚€ ⟢ bβ‚‚) (f₁₃ : b₁ ⟢ b₃) (f : bβ‚€ ⟢ b₃) (hβ‚€β‚‚ : CategoryTheory.CategoryStruct.comp f₀₁ f₁₂ = fβ‚€β‚‚) (h₁₃ : CategoryTheory.CategoryStruct.comp f₁₂ f₂₃ = f₁₃) (hf : CategoryTheory.CategoryStruct.comp f₀₁ f₁₃ = f) {Z : F.obj bβ‚€ ⟢ F.obj b₃} (h : CategoryTheory.CategoryStruct.comp (F.map f₀₁) (F.map f₁₃) ⟢ Z), CategoryTheory.CategoryStruct.comp (F.mapComp' f₀₁ f₁₃ f β‹―).hom h = CategoryTheory.CategoryStruct.comp (F.mapComp' fβ‚€β‚‚ f₂₃ f β‹―).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (F.mapComp' f₀₁ f₁₂ fβ‚€β‚‚ hβ‚€β‚‚).hom (F.map f₂₃)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (F.map f₀₁) (F.map f₁₂) (F.map f₂₃)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (F.map f₀₁) (F.mapComp' f₁₂ f₂₃ f₁₃ h₁₃).inv) h)))
Std.Time.PlainDate.format
Std.Time.Format
Std.Time.PlainDate β†’ String β†’ String
CategoryTheory.exactPairingCongrLeft._proof_6
Mathlib.CategoryTheory.Monoidal.Rigid.Basic
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.MonoidalCategory C] {X X' : C} (i : X β‰… X'), CategoryTheory.monoidalComp (CategoryTheory.CategoryStruct.id (CategoryTheory.MonoidalCategoryStruct.tensorObj (CategoryTheory.MonoidalCategoryStruct.tensorUnit C) X)) (CategoryTheory.monoidalComp (CategoryTheory.CategoryStruct.comp i.hom i.inv) (CategoryTheory.CategoryStruct.id (CategoryTheory.MonoidalCategoryStruct.tensorObj X (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.leftUnitor X).hom (CategoryTheory.MonoidalCategoryStruct.rightUnitor X).inv
Int.cast_multiset_sum
Mathlib.Algebra.BigOperators.Ring.Finset
βˆ€ {R : Type u_4} [inst : AddCommGroupWithOne R] (s : Multiset β„€), ↑s.sum = (Multiset.map Int.cast s).sum
FirstOrder.Language.BoundedFormula.equal.sizeOf_spec
Mathlib.ModelTheory.Syntax
βˆ€ {L : FirstOrder.Language} {Ξ± : Type u'} [inst : SizeOf Ξ±] {n : β„•} (t₁ tβ‚‚ : L.Term (Ξ± βŠ• Fin n)), sizeOf (FirstOrder.Language.BoundedFormula.equal t₁ tβ‚‚) = 1 + sizeOf n + sizeOf t₁ + sizeOf tβ‚‚
Lean.Meta.Grind.Arith.Cutsat.DiseqCnstr.noConfusionType
Lean.Meta.Tactic.Grind.Arith.Cutsat.Types
Sort u β†’ Lean.Meta.Grind.Arith.Cutsat.DiseqCnstr β†’ Lean.Meta.Grind.Arith.Cutsat.DiseqCnstr β†’ Sort u
Subsemiring.instCompleteLattice._proof_7
Mathlib.Algebra.Ring.Subsemiring.Basic
βˆ€ {R : Type u_1} [inst : NonAssocSemiring R] (s : Set (Subsemiring R)), βˆ€ a ∈ s, sInf s ≀ a
_private.Mathlib.Algebra.Order.Floor.Ring.0.Mathlib.Meta.Positivity.evalIntFloor.match_4
Mathlib.Algebra.Order.Floor.Ring
(u_1 : Lean.Level) β†’ (Ξ±' : Q(Type u_1)) β†’ (ir : Q(Ring Β«$Ξ±'Β»)) β†’ (io : Q(LinearOrder Β«$Ξ±'Β»)) β†’ (a : Q(Β«$Ξ±'Β»)) β†’ (motive : Mathlib.Meta.Positivity.Strictness q(inferInstance) q(inferInstance) a β†’ Sort u_1) β†’ (__do_lift : Mathlib.Meta.Positivity.Strictness q(inferInstance) q(inferInstance) a) β†’ ((pa : Q(0 < Β«$aΒ»)) β†’ motive (Mathlib.Meta.Positivity.Strictness.positive pa)) β†’ ((pa : Q(0 ≀ Β«$aΒ»)) β†’ motive (Mathlib.Meta.Positivity.Strictness.nonnegative pa)) β†’ ((x : Mathlib.Meta.Positivity.Strictness q(inferInstance) q(inferInstance) a) β†’ motive x) β†’ motive __do_lift
CategoryTheory.Adjunction.leftAdjointCompIso
Mathlib.CategoryTheory.Adjunction.CompositionIso
{Cβ‚€ : Type u_1} β†’ {C₁ : Type u_2} β†’ {Cβ‚‚ : Type u_3} β†’ [inst : CategoryTheory.Category.{v_1, u_1} Cβ‚€] β†’ [inst_1 : CategoryTheory.Category.{v_2, u_2} C₁] β†’ [inst_2 : CategoryTheory.Category.{v_3, u_3} Cβ‚‚] β†’ {F₀₁ : CategoryTheory.Functor Cβ‚€ C₁} β†’ {F₁₂ : CategoryTheory.Functor C₁ Cβ‚‚} β†’ {Fβ‚€β‚‚ : CategoryTheory.Functor Cβ‚€ Cβ‚‚} β†’ {G₁₀ : CategoryTheory.Functor C₁ Cβ‚€} β†’ {G₂₁ : CategoryTheory.Functor Cβ‚‚ C₁} β†’ {Gβ‚‚β‚€ : CategoryTheory.Functor Cβ‚‚ Cβ‚€} β†’ (F₀₁ ⊣ G₁₀) β†’ (F₁₂ ⊣ G₂₁) β†’ (Fβ‚€β‚‚ ⊣ Gβ‚‚β‚€) β†’ (G₂₁.comp G₁₀ β‰… Gβ‚‚β‚€) β†’ (F₀₁.comp F₁₂ β‰… Fβ‚€β‚‚)
Dynamics.coverEntropyInfEntourage_antitone
Mathlib.Dynamics.TopologicalEntropy.CoverEntropy
βˆ€ {X : Type u_1} (T : X β†’ X) (F : Set X), Antitone fun U => Dynamics.coverEntropyInfEntourage T F U
Nat.succ_le_of_lt
Init.Data.Nat.Basic
βˆ€ {n m : β„•}, n < m β†’ n.succ ≀ m
_private.Mathlib.LinearAlgebra.TensorAlgebra.Basis.0.TensorAlgebra.rank_eq.match_1_1
Mathlib.LinearAlgebra.TensorAlgebra.Basis
βˆ€ {R : Type u_2} {M : Type u_1} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] (motive : Nonempty ((I : Type u_1) Γ— Module.Basis I R M) β†’ Prop) (x : Nonempty ((I : Type u_1) Γ— Module.Basis I R M)), (βˆ€ (ΞΊ : Type u_1) (b : Module.Basis ΞΊ R M), motive β‹―) β†’ motive x
_private.Lean.Meta.Tactic.Grind.EMatchTheorem.0.Lean.Meta.Grind.mkEMatchTheoremWithKind?._sparseCasesOn_1
Lean.Meta.Tactic.Grind.EMatchTheorem
{motive : Lean.Meta.Grind.EMatchTheoremKind β†’ Sort u} β†’ (t : Lean.Meta.Grind.EMatchTheoremKind) β†’ ((gen : Bool) β†’ motive (Lean.Meta.Grind.EMatchTheoremKind.eqLhs gen)) β†’ ((gen : Bool) β†’ motive (Lean.Meta.Grind.EMatchTheoremKind.eqRhs gen)) β†’ motive Lean.Meta.Grind.EMatchTheoremKind.eqBwd β†’ (Nat.hasNotBit 11 t.ctorIdx β†’ motive t) β†’ motive t
Array.getElem?_attach
Init.Data.Array.Attach
βˆ€ {Ξ± : Type u_1} {xs : Array Ξ±} {i : β„•}, xs.attach[i]? = Option.pmap Subtype.mk xs[i]? β‹―
Rat.interior_compact_eq_empty
Mathlib.Topology.Instances.RatLemmas
βˆ€ {s : Set β„š}, IsCompact s β†’ interior s = βˆ…
Lean.Parser.OrElseOnAntiquotBehavior.merge.sizeOf_spec
Lean.Parser.Basic
sizeOf Lean.Parser.OrElseOnAntiquotBehavior.merge = 1
String.reduceLE._regBuiltin.String.reduceLE.declare_1._@.Lean.Meta.Tactic.Simp.BuiltinSimprocs.String.974433241._hygCtx._hyg.22
Lean.Meta.Tactic.Simp.BuiltinSimprocs.String
IO Unit
_private.Mathlib.Probability.Moments.SubGaussian.0.ProbabilityTheory.HasSubgaussianMGF_iff_kernel.match_1_3
Mathlib.Probability.Moments.SubGaussian
βˆ€ {Ξ© : Type u_1} {mΞ© : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {X : Ξ© β†’ ℝ} {c : NNReal} (motive : ProbabilityTheory.Kernel.HasSubgaussianMGF X c (ProbabilityTheory.Kernel.const Unit ΞΌ) (MeasureTheory.Measure.dirac ()) β†’ Prop) (x : ProbabilityTheory.Kernel.HasSubgaussianMGF X c (ProbabilityTheory.Kernel.const Unit ΞΌ) (MeasureTheory.Measure.dirac ())), (βˆ€ (h1 : βˆ€ (t : ℝ), MeasureTheory.Integrable (fun Ο‰ => Real.exp (t * X Ο‰)) ((MeasureTheory.Measure.dirac ()).bind ⇑(ProbabilityTheory.Kernel.const Unit ΞΌ))) (h2 : βˆ€α΅ (Ο‰' : Unit) βˆ‚MeasureTheory.Measure.dirac (), βˆ€ (t : ℝ), ProbabilityTheory.mgf X ((ProbabilityTheory.Kernel.const Unit ΞΌ) Ο‰') t ≀ Real.exp (↑c * t ^ 2 / 2)), motive β‹―) β†’ motive x
NormedAddGroupHom._sizeOf_1
Mathlib.Analysis.Normed.Group.Hom
{V : Type u_1} β†’ {W : Type u_2} β†’ {inst : SeminormedAddCommGroup V} β†’ {inst_1 : SeminormedAddCommGroup W} β†’ [SizeOf V] β†’ [SizeOf W] β†’ NormedAddGroupHom V W β†’ β„•
MulArchimedeanOrder.val.eq_1
Mathlib.Algebra.Order.Archimedean.Class
βˆ€ {M : Type u_1}, MulArchimedeanOrder.val = Equiv.refl (MulArchimedeanOrder M)
MeasurableSMul.rec
Mathlib.MeasureTheory.Group.Arithmetic
{M : Type u_2} β†’ {Ξ± : Type u_3} β†’ [inst : SMul M Ξ±] β†’ [inst_1 : MeasurableSpace M] β†’ [inst_2 : MeasurableSpace Ξ±] β†’ {motive : MeasurableSMul M Ξ± β†’ Sort u} β†’ ([toMeasurableConstSMul : MeasurableConstSMul M Ξ±] β†’ (measurable_smul_const : βˆ€ (x : Ξ±), Measurable fun x_1 => x_1 β€’ x) β†’ motive β‹―) β†’ (t : MeasurableSMul M Ξ±) β†’ motive t
Lean.Meta.Grind.AC.DiseqCnstrProof.simp_middle
Lean.Meta.Tactic.Grind.AC.Types
Bool β†’ Lean.Grind.AC.Seq β†’ Lean.Grind.AC.Seq β†’ Lean.Meta.Grind.AC.EqCnstr β†’ Lean.Meta.Grind.AC.DiseqCnstr β†’ Lean.Meta.Grind.AC.DiseqCnstrProof
Std.ExtHashMap.contains_of_contains_filterMap
Std.Data.ExtHashMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {Ξ³ : Type w} {x : BEq Ξ±} {x_1 : Hashable Ξ±} {m : Std.ExtHashMap Ξ± Ξ²} [inst : EquivBEq Ξ±] [inst_1 : LawfulHashable Ξ±] {f : Ξ± β†’ Ξ² β†’ Option Ξ³} {k : Ξ±}, (Std.ExtHashMap.filterMap f m).contains k = true β†’ m.contains k = true
Complex.UnitDisc.mk_neg
Mathlib.Analysis.Complex.UnitDisc.Basic
βˆ€ (z : β„‚) (hz : β€–-zβ€– < 1), Complex.UnitDisc.mk (-z) hz = -Complex.UnitDisc.mk z β‹―
ValuativeRel.trivialRel._proof_5
Mathlib.RingTheory.Valuation.ValuativeRel.Trivial
βˆ€ {R : Type} [inst : CommRing R] [inst_1 : DecidableEq R] [IsDomain R] {x y z : R}, (Β¬if 0 = 0 then z = 0 else True) β†’ (if y * z = 0 then x * z = 0 else True) β†’ if y = 0 then x = 0 else True
PowerBasis.liftEquiv._proof_6
Mathlib.RingTheory.PowerBasis
βˆ€ {S : Type u_3} [inst : Ring S] {A : Type u_2} [inst_1 : CommRing A] [inst_2 : Algebra A S] {S' : Type u_1} [inst_3 : Ring S'] [inst_4 : Algebra A S'] (pb : PowerBasis A S) (y : { y // (Polynomial.aeval y) (minpoly A pb.gen) = 0 }), ⟨(pb.lift ↑y β‹―) pb.gen, β‹―βŸ© = y
Mathlib.Tactic.superscriptTerm
Mathlib.Util.Superscript
Lean.Parser.Parser
CategoryTheory.effectiveEpiFamilyStructOfComp._proof_4
Mathlib.CategoryTheory.EffectiveEpi.Comp
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {I : Type u_3} {Z Y : I β†’ C} {X : C} (g : (i : I) β†’ Z i ⟢ Y i) (f : (i : I) β†’ Y i ⟢ X) {W : C} (Ο† : (a : I) β†’ Y a ⟢ W), (βˆ€ {Z : C} (a₁ aβ‚‚ : I) (g₁ : Z ⟢ Y a₁) (gβ‚‚ : Z ⟢ Y aβ‚‚), CategoryTheory.CategoryStruct.comp g₁ (f a₁) = CategoryTheory.CategoryStruct.comp gβ‚‚ (f aβ‚‚) β†’ CategoryTheory.CategoryStruct.comp g₁ (Ο† a₁) = CategoryTheory.CategoryStruct.comp gβ‚‚ (Ο† aβ‚‚)) β†’ βˆ€ {Z_1 : C} (i₁ iβ‚‚ : I) (g₁ : Z_1 ⟢ Z i₁) (gβ‚‚ : Z_1 ⟢ Z iβ‚‚), CategoryTheory.CategoryStruct.comp g₁ (CategoryTheory.CategoryStruct.comp (g i₁) (f i₁)) = CategoryTheory.CategoryStruct.comp gβ‚‚ (CategoryTheory.CategoryStruct.comp (g iβ‚‚) (f iβ‚‚)) β†’ CategoryTheory.CategoryStruct.comp g₁ (CategoryTheory.CategoryStruct.comp (g i₁) (Ο† i₁)) = CategoryTheory.CategoryStruct.comp gβ‚‚ (CategoryTheory.CategoryStruct.comp (g iβ‚‚) (Ο† iβ‚‚))
_private.Mathlib.SetTheory.Nimber.Field.0.Nimber.mul_nonempty
Mathlib.SetTheory.Nimber.Field
βˆ€ (a b : Nimber), {x | βˆƒ a' < a, βˆƒ b' < b, a' * b + a * b' + a' * b' = x}ᢜ.Nonempty
_private.Mathlib.Algebra.Order.Archimedean.Basic.0.existsUnique_div_zpow_mem_Ico._simp_1_1
Mathlib.Algebra.Order.Archimedean.Basic
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] {a b x : Ξ±}, (x ∈ Set.Ico a b) = (a ≀ x ∧ x < b)
AlternatingMap.instFunLike._proof_1
Mathlib.LinearAlgebra.Alternating.Basic
βˆ€ {R : Type u_4} [inst : Semiring R] {M : Type u_1} [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {N : Type u_2} [inst_3 : AddCommMonoid N] [inst_4 : Module R N] {ΞΉ : Type u_3} (f g : M [β‹€^ΞΉ]β†’β‚—[R] N), (fun f => (↑f).toFun) f = (fun f => (↑f).toFun) g β†’ f = g
AlgebraicGeometry.Scheme.Cover.map_prop
Mathlib.AlgebraicGeometry.Cover.MorphismProperty
βˆ€ {X : AlgebraicGeometry.Scheme} {P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} (𝒰 : AlgebraicGeometry.Scheme.Cover (AlgebraicGeometry.Scheme.precoverage P) X) (i : 𝒰.Iβ‚€), P (𝒰.f i)
Condensed.StoneanCompHaus.equivalence._proof_5
Mathlib.Condensed.Equivalence
CategoryTheory.FinitaryPreExtensive Stonean
_private.Mathlib.Tactic.FunProp.Mor.0.Mathlib.Meta.FunProp.Mor.whnfPred.match_3
Mathlib.Tactic.FunProp.Mor
(motive : Option Lean.Expr β†’ Sort u_1) β†’ (__do_lift : Option Lean.Expr) β†’ ((e : Lean.Expr) β†’ motive (some e)) β†’ (Unit β†’ motive none) β†’ motive __do_lift
_private.Mathlib.Analysis.Normed.Operator.BoundedLinearMaps.0.IsBoundedLinearMap.isBigO_id.match_1_1
Mathlib.Analysis.Normed.Operator.BoundedLinearMaps
βˆ€ {E : Type u_2} [inst : SeminormedAddCommGroup E] {F : Type u_1} [inst_1 : SeminormedAddCommGroup F] {f : E β†’ F} (motive : (βˆƒ M, 0 < M ∧ βˆ€ (x : E), β€–f xβ€– ≀ M * β€–xβ€–) β†’ Prop) (x : βˆƒ M, 0 < M ∧ βˆ€ (x : E), β€–f xβ€– ≀ M * β€–xβ€–), (βˆ€ (w : ℝ) (left : 0 < w) (hM : βˆ€ (x : E), β€–f xβ€– ≀ w * β€–xβ€–), motive β‹―) β†’ motive x
CategoryTheory.TransfiniteCompositionOfShape.incl
Mathlib.CategoryTheory.Limits.Shapes.Preorder.TransfiniteCompositionOfShape
{C : Type u} β†’ [inst : CategoryTheory.Category.{v, u} C] β†’ {J : Type w} β†’ [inst_1 : LinearOrder J] β†’ [inst_2 : OrderBot J] β†’ {X Y : C} β†’ {f : X ⟢ Y} β†’ [inst_3 : SuccOrder J] β†’ [inst_4 : WellFoundedLT J] β†’ (self : CategoryTheory.TransfiniteCompositionOfShape J f) β†’ self.F ⟢ (CategoryTheory.Functor.const J).obj Y
_private.Mathlib.Topology.Algebra.InfiniteSum.ConditionalInt.0.HasProd.hasProd_symmetricIco_of_hasProd_symmetricIcc._proof_1_3
Mathlib.Topology.Algebra.InfiniteSum.ConditionalInt
βˆ€ (N : β„•), -↑N ≀ ↑N
_private.Mathlib.GroupTheory.Perm.Cycle.Basic.0.Equiv.Perm.IsCycleOn.pow_apply_eq_pow_apply._simp_1_1
Mathlib.GroupTheory.Perm.Cycle.Basic
βˆ€ {Ξ± : Sort u_1} {Ξ² : Sort u_2} (e : Ξ± ≃ Ξ²) {x : Ξ²} {y : Ξ±}, (y = e.symm x) = (e y = x)
Lean.Order.coind_monotone_forall
Init.Internal.Order.Basic
βˆ€ {Ξ± : Sort u_1} [inst : Lean.Order.PartialOrder Ξ±] {Ξ² : Sort u_2} (f : Ξ± β†’ Ξ² β†’ Lean.Order.ReverseImplicationOrder), Lean.Order.monotone f β†’ Lean.Order.monotone fun x => βˆ€ (y : Ξ²), f x y
CategoryTheory.GlueData'.t''._proof_7
Mathlib.CategoryTheory.GlueData
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] (D : CategoryTheory.GlueData' C) (i j k : D.J) (hij : Β¬i = j) (hjk : Β¬j = k), CategoryTheory.Limits.HasPullback (D.f j k hjk) (D.f j i β‹―)
_private.Init.Grind.ToInt.0.Lean.Grind.instBEqIntInterval.beq.eq_def
Init.Grind.ToInt
βˆ€ (x x_1 : Lean.Grind.IntInterval), Lean.Grind.instBEqIntInterval.beq x x_1 = match x, x_1 with | Lean.Grind.IntInterval.co a a_1, Lean.Grind.IntInterval.co b b_1 => a == b && a_1 == b_1 | Lean.Grind.IntInterval.ci a, Lean.Grind.IntInterval.ci b => a == b | Lean.Grind.IntInterval.io a, Lean.Grind.IntInterval.io b => a == b | Lean.Grind.IntInterval.ii, Lean.Grind.IntInterval.ii => true | x, x_2 => false
Lean.ParserDescr.unicodeSymbol
Init.Prelude
String β†’ String β†’ Bool β†’ Lean.ParserDescr
_private.Lean.Meta.Tactic.Grind.Order.Assert.0.Lean.Meta.Grind.Order.propagatePending.match_1
Lean.Meta.Tactic.Grind.Order.Assert
(motive : Lean.Meta.Grind.Order.ToPropagate β†’ Sort u_1) β†’ (p : Lean.Meta.Grind.Order.ToPropagate) β†’ ((c : Lean.Meta.Grind.Order.Cnstr Lean.Meta.Grind.Order.NodeId) β†’ (e : Lean.Expr) β†’ (u v : Lean.Meta.Grind.Order.NodeId) β†’ (k k' : Lean.Meta.Grind.Order.Weight) β†’ motive (Lean.Meta.Grind.Order.ToPropagate.eqTrue c e u v k k')) β†’ ((c : Lean.Meta.Grind.Order.Cnstr Lean.Meta.Grind.Order.NodeId) β†’ (e : Lean.Expr) β†’ (u v : Lean.Meta.Grind.Order.NodeId) β†’ (k k' : Lean.Meta.Grind.Order.Weight) β†’ motive (Lean.Meta.Grind.Order.ToPropagate.eqFalse c e u v k k')) β†’ ((u v : Lean.Meta.Grind.Order.NodeId) β†’ motive (Lean.Meta.Grind.Order.ToPropagate.eq u v)) β†’ motive p
Module.Dual.baseChange._proof_2
Mathlib.LinearAlgebra.Dual.BaseChange
βˆ€ {R : Type u_1} [inst : CommSemiring R] (A : Type u_2) [inst_1 : CommSemiring A] [inst_2 : Algebra R A], SMulCommClass R A A
Cardinal.partialOrder._proof_2
Mathlib.SetTheory.Cardinal.Order
βˆ€ (a b c : Cardinal.{u_1}), a ≀ b β†’ b ≀ c β†’ a ≀ c
UpperHalfPlane.petersson_slash_SL
Mathlib.NumberTheory.ModularForms.Petersson
βˆ€ (k : β„€) (f f' : UpperHalfPlane β†’ β„‚) (g : Matrix.SpecialLinearGroup (Fin 2) β„€) (Ο„ : UpperHalfPlane), UpperHalfPlane.petersson k (SlashAction.map k g f) (SlashAction.map k g f') Ο„ = UpperHalfPlane.petersson k f f' (g β€’ Ο„)
ContinuousMapZero.instNonUnitalCommSemiring._proof_10
Mathlib.Topology.ContinuousMap.ContinuousMapZero
βˆ€ {X : Type u_1} {R : Type u_2} [inst : Zero X] [inst_1 : TopologicalSpace X] [inst_2 : TopologicalSpace R] [inst_3 : CommSemiring R] [inst_4 : IsTopologicalSemiring R] (a : ContinuousMapZero X R), 0 * a = 0
CategoryTheory.CostructuredArrow.map_mk
Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] {T T' : D} {Y : C} {S : CategoryTheory.Functor C D} {f : S.obj Y ⟢ T} (g : T ⟢ T'), (CategoryTheory.CostructuredArrow.map g).obj (CategoryTheory.CostructuredArrow.mk f) = CategoryTheory.CostructuredArrow.mk (CategoryTheory.CategoryStruct.comp f g)
_private.Lean.Compiler.LCNF.Simp.FunDeclInfo.0.Lean.Compiler.LCNF.Simp.FunDeclInfoMap.update.addLetValueOccs
Lean.Compiler.LCNF.Simp.FunDeclInfo
Lean.Compiler.LCNF.LetValue β†’ StateRefT' IO.RealWorld Lean.Compiler.LCNF.Simp.FunDeclInfoMap Lean.Compiler.LCNF.CompilerM Unit
DilationEquiv.recOn
Mathlib.Topology.MetricSpace.DilationEquiv
{X : Type u_1} β†’ {Y : Type u_2} β†’ [inst : PseudoEMetricSpace X] β†’ [inst_1 : PseudoEMetricSpace Y] β†’ {motive : X β‰ƒα΅ˆ Y β†’ Sort u} β†’ (t : X β‰ƒα΅ˆ Y) β†’ ((toEquiv : X ≃ Y) β†’ (edist_eq' : βˆƒ r, r β‰  0 ∧ βˆ€ (x y : X), edist (toEquiv.toFun x) (toEquiv.toFun y) = ↑r * edist x y) β†’ motive { toEquiv := toEquiv, edist_eq' := edist_eq' }) β†’ motive t
CondensedSet.topCatAdjunctionUnit
Mathlib.Condensed.TopCatAdjunction
(X : CondensedSet) β†’ X ⟢ X.toTopCat.toCondensedSet
AlgebraicTopology.DoldKan.QInfty_comp_PInfty_assoc
Mathlib.AlgebraicTopology.DoldKan.PInfty
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{v_1, u_1} C] [inst_1 : CategoryTheory.Preadditive C] {X : CategoryTheory.SimplicialObject C} {Z : ChainComplex C β„•} (h : AlgebraicTopology.AlternatingFaceMapComplex.obj X ⟢ Z), CategoryTheory.CategoryStruct.comp AlgebraicTopology.DoldKan.QInfty (CategoryTheory.CategoryStruct.comp AlgebraicTopology.DoldKan.PInfty h) = CategoryTheory.CategoryStruct.comp 0 h
_private.Lean.Elab.BuiltinNotation.0.Lean.Elab.Term.isSubstCandidate
Lean.Elab.BuiltinNotation
Lean.Expr β†’ Lean.Expr β†’ Lean.MetaM Bool
Order.isSuccPrelimit_toDual_iff
Mathlib.Order.SuccPred.Limit
βˆ€ {Ξ± : Type u_1} {a : Ξ±} [inst : LT Ξ±], Order.IsSuccPrelimit (OrderDual.toDual a) ↔ Order.IsPredPrelimit a
_private.Lean.Meta.Tactic.Grind.Arith.Cutsat.EqCnstr.0.Lean.Meta.Grind.Arith.Cutsat.DiseqCnstr.assertCore
Lean.Meta.Tactic.Grind.Arith.Cutsat.EqCnstr
Lean.Meta.Grind.Arith.Cutsat.DiseqCnstr β†’ Lean.Meta.Grind.GoalM Unit
FirstOrder.Field.FieldAxiom.toProp.eq_7
Mathlib.ModelTheory.Algebra.Field.Basic
βˆ€ (K : Type u_2) [inst : Add K] [inst_1 : Mul K] [inst_2 : Neg K] [inst_3 : Zero K] [inst_4 : One K], FirstOrder.Field.FieldAxiom.toProp K FirstOrder.Field.FieldAxiom.existsInv = βˆ€ (x : K), x β‰  0 β†’ βˆƒ y, x * y = 1
CategoryTheory.Limits.PreservesFiniteProducts.casesOn
Mathlib.CategoryTheory.Limits.Preserves.Finite
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ {D : Type uβ‚‚} β†’ [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] β†’ {F : CategoryTheory.Functor C D} β†’ {motive : CategoryTheory.Limits.PreservesFiniteProducts F β†’ Sort u} β†’ (t : CategoryTheory.Limits.PreservesFiniteProducts F) β†’ ((preserves : βˆ€ (n : β„•), CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete (Fin n)) F) β†’ motive β‹―) β†’ motive t
CommRingCat.Colimits.ColimitType.AddGroupWithOne._proof_3
Mathlib.Algebra.Category.Ring.Colimits
βˆ€ {J : Type u_1} [inst : CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J CommRingCat) (n : β„•), (↑n).castDef = (↑n).castDef
ContinuousMap.instNormedAlgebra._proof_2
Mathlib.Topology.ContinuousMap.Compact
βˆ€ {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] {π•œ : Type u_3} {Ξ³ : Type u_2} [inst_1 : NormedField π•œ] [inst_2 : SeminormedRing Ξ³] [inst_3 : NormedAlgebra π•œ Ξ³] (r : π•œ) (x : C(Ξ±, Ξ³)), Algebra.algebraMap r * x = x * Algebra.algebraMap r
smoothPresheafRing
Mathlib.Geometry.Manifold.Sheaf.Smooth
{π•œ : Type u_1} β†’ [inst : NontriviallyNormedField π•œ] β†’ {EM : Type u_2} β†’ [inst_1 : NormedAddCommGroup EM] β†’ [inst_2 : NormedSpace π•œ EM] β†’ {HM : Type u_3} β†’ [inst_3 : TopologicalSpace HM] β†’ ModelWithCorners π•œ EM HM β†’ {E : Type u_4} β†’ [inst_4 : NormedAddCommGroup E] β†’ [inst_5 : NormedSpace π•œ E] β†’ {H : Type u_5} β†’ [inst_6 : TopologicalSpace H] β†’ (I : ModelWithCorners π•œ E H) β†’ (M : Type u) β†’ [inst_7 : TopologicalSpace M] β†’ [ChartedSpace HM M] β†’ (R : Type u) β†’ [inst_9 : TopologicalSpace R] β†’ [inst_10 : ChartedSpace H R] β†’ [inst_11 : Ring R] β†’ [ContMDiffRing I (β†‘βŠ€) R] β†’ TopCat.Presheaf RingCat { carrier := M, str := inst_7 }
_private.Mathlib.Order.WithBot.0.WithTop.noBotOrder.match_3
Mathlib.Order.WithBot
βˆ€ {Ξ± : Type u_1} (motive : WithTop Ξ± β†’ Prop) (x : WithTop Ξ±), (βˆ€ (a : Unit), motive none) β†’ (βˆ€ (a : Ξ±), motive (some a)) β†’ motive x
ContinuousMap.instNonUnitalSemiringOfIsTopologicalSemiring._proof_1
Mathlib.Topology.ContinuousMap.Algebra
βˆ€ {Ξ² : Type u_1} [inst : TopologicalSpace Ξ²] [inst_1 : NonUnitalSemiring Ξ²] [IsTopologicalSemiring Ξ²], ContinuousAdd Ξ²
Matrix.l2_opNNNorm_conjTranspose
Mathlib.Analysis.CStarAlgebra.Matrix
βˆ€ {π•œ : Type u_1} {m : Type u_2} {n : Type u_3} [inst : RCLike π•œ] [inst_1 : Fintype m] [inst_2 : Fintype n] [inst_3 : DecidableEq n] [inst_4 : DecidableEq m] (A : Matrix m n π•œ), β€–A.conjTransposeβ€–β‚Š = β€–Aβ€–β‚Š
LT.lt.pos
Mathlib.Algebra.Order.Monoid.Canonical.Defs
βˆ€ {Ξ± : Type u} [inst : AddZeroClass Ξ±] [inst_1 : Preorder Ξ±] [CanonicallyOrderedAdd Ξ±] {a b : Ξ±}, a < b β†’ 0 < b
_private.Lean.Elab.PreDefinition.TerminationMeasure.0.Lean.Elab.TerminationMeasure.delab.go.match_1.splitter
Lean.Elab.PreDefinition.TerminationMeasure
(motive : β„• β†’ Lean.TSyntaxArray `ident β†’ Sort u_1) β†’ (x : β„•) β†’ (x_1 : Lean.TSyntaxArray `ident) β†’ ((vars : Lean.TSyntaxArray `ident) β†’ motive 0 vars) β†’ ((i : β„•) β†’ (vars : Lean.TSyntaxArray `ident) β†’ motive i.succ vars) β†’ motive x x_1
LieAlgebra.exists_isRegular
Mathlib.Algebra.Lie.Rank
βˆ€ (R : Type u_1) (L : Type u_3) [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : LieAlgebra R L] [inst_3 : Module.Finite R L] [inst_4 : Module.Free R L] [IsDomain R] [Infinite R], βˆƒ x, LieAlgebra.IsRegular R x
CategoryTheory.MorphismProperty.LeftFraction.f
Mathlib.CategoryTheory.Localization.CalculusOfFractions
{C : Type u_1} β†’ [inst : CategoryTheory.Category.{v_1, u_1} C] β†’ {W : CategoryTheory.MorphismProperty C} β†’ {X Y : C} β†’ (self : W.LeftFraction X Y) β†’ X ⟢ self.Y'
_private.Mathlib.Combinatorics.SimpleGraph.Matching.0.SimpleGraph.Subgraph.isMatching_iff_forall_degree._simp_1_1
Mathlib.Combinatorics.SimpleGraph.Matching
βˆ€ {V : Type u} {G : SimpleGraph V} {G' : G.Subgraph} {v : V} [inst : Fintype ↑(G'.neighborSet v)], (G'.degree v = 1) = βˆƒ! w, G'.Adj v w
_private.Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Enums.0.Lean.Elab.Tactic.BVDecide.Frontend.Normalize.enumsPass.postprocess
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Enums
Lean.MVarId β†’ StateRefT' IO.RealWorld Lean.Elab.Tactic.BVDecide.Frontend.Normalize.PostProcessState✝ Lean.MetaM Lean.MVarId
NFA.accepts_iff_exists_path
Mathlib.Computability.NFA
βˆ€ {Ξ± : Type u} {Οƒ : Type v} {M : NFA Ξ± Οƒ} {x : List Ξ±}, x ∈ M.accepts ↔ βˆƒ s ∈ M.start, βˆƒ t ∈ M.accept, Nonempty (M.Path s t x)
Multiset.mem_sym2_iff
Mathlib.Data.Multiset.Sym
βˆ€ {Ξ± : Type u_1} {m : Multiset Ξ±} {z : Sym2 Ξ±}, z ∈ m.sym2 ↔ βˆ€ y ∈ z, y ∈ m
_private.Mathlib.CategoryTheory.Limits.Shapes.Pullback.Assoc.0.CategoryTheory.Limits.termG₃
Mathlib.CategoryTheory.Limits.Shapes.Pullback.Assoc
Lean.ParserDescr
MeasureTheory.probReal_add_probReal_compl
Mathlib.MeasureTheory.Measure.Typeclasses.Probability
βˆ€ {Ξ± : Type u_1} {m0 : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} {s : Set Ξ±} [MeasureTheory.IsProbabilityMeasure ΞΌ], MeasurableSet s β†’ ΞΌ.real s + ΞΌ.real sᢜ = 1
Function.mem_support
Mathlib.Algebra.Notation.Support
βˆ€ {ΞΉ : Type u_1} {M : Type u_3} [inst : Zero M] {f : ΞΉ β†’ M} {x : ΞΉ}, x ∈ Function.support f ↔ f x β‰  0
_private.Init.Meta.Defs.0.Lean.Syntax.decodeNameLit.match_1
Init.Meta.Defs
(motive : Lean.Name β†’ Sort u_1) β†’ (x : Lean.Name) β†’ (Unit β†’ motive Lean.Name.anonymous) β†’ ((name : Lean.Name) β†’ motive name) β†’ motive x
_private.Lean.Meta.ExprLens.0.Lean.Meta.foldAncestorsAux._unsafe_rec
Lean.Meta.ExprLens
{M : Type β†’ Type} β†’ [Monad M] β†’ [MonadLiftT Lean.MetaM M] β†’ [MonadControlT Lean.MetaM M] β†’ [Lean.MonadError M] β†’ {Ξ± : Type} β†’ (Array Lean.Expr β†’ Lean.Expr β†’ β„• β†’ Ξ± β†’ M Ξ±) β†’ Ξ± β†’ List β„• β†’ Array Lean.Expr β†’ Lean.Expr β†’ M Ξ±
CategoryTheory.Limits.ConeMorphism.ext
Mathlib.CategoryTheory.Limits.Cones
βˆ€ {J : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} J] {C : Type u₃} [inst_1 : CategoryTheory.Category.{v₃, u₃} C] {F : CategoryTheory.Functor J C} {c c' : CategoryTheory.Limits.Cone F} (f g : c ⟢ c'), f.hom = g.hom β†’ f = g
LinearMap.compAlternatingMap_smul
Mathlib.LinearAlgebra.Alternating.Basic
βˆ€ {R : Type u_1} [inst : Semiring R] {M : Type u_2} [inst_1 : AddCommMonoid M] [inst_2 : Module R M] {N : Type u_3} [inst_3 : AddCommMonoid N] [inst_4 : Module R N] {ΞΉ : Type u_7} {S : Type u_10} {Nβ‚‚ : Type u_11} [inst_5 : AddCommMonoid Nβ‚‚] [inst_6 : Module R Nβ‚‚] [inst_7 : Monoid S] [inst_8 : DistribMulAction S N] [inst_9 : DistribMulAction S Nβ‚‚] [inst_10 : SMulCommClass R S N] [inst_11 : SMulCommClass R S Nβ‚‚] [LinearMap.CompatibleSMul N Nβ‚‚ S R] (g : N β†’β‚—[R] Nβ‚‚) (s : S) (f : M [β‹€^ΞΉ]β†’β‚—[R] N), g.compAlternatingMap (s β€’ f) = s β€’ g.compAlternatingMap f
Nat.getElem?_toArray_roc
Init.Data.Range.Polymorphic.NatLemmas
βˆ€ {m n i : β„•}, (m<...=n).toArray[i]? = if i < n - m then some (m + 1 + i) else none
Module.Basis.isUnitSMul
Mathlib.LinearAlgebra.Basis.SMul
{ΞΉ : Type u_1} β†’ {R : Type u_2} β†’ {M : Type u_4} β†’ [inst : Semiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst_2 : Module R M] β†’ Module.Basis ΞΉ R M β†’ {w : ΞΉ β†’ R} β†’ (βˆ€ (i : ΞΉ), IsUnit (w i)) β†’ Module.Basis ΞΉ R M
squarefree_iff_irreducible_sq_not_dvd_of_ne_zero
Mathlib.Algebra.Squarefree.Basic
βˆ€ {R : Type u_1} [inst : CommMonoidWithZero R] [WfDvdMonoid R] {r : R}, r β‰  0 β†’ (Squarefree r ↔ βˆ€ (x : R), Irreducible x β†’ Β¬x * x ∣ r)
Int.negSucc_shiftRight
Init.Data.Int.Bitwise.Lemmas
βˆ€ (m n : β„•), Int.negSucc m >>> n = Int.negSucc (m >>> n)