name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
CategoryTheory.Limits.Cones.extendComp_inv_hom
Mathlib.CategoryTheory.Limits.Cones
βˆ€ {J : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} J] {C : Type u₃} [inst_1 : CategoryTheory.Category.{v₃, u₃} C] {F : CategoryTheory.Functor J C} (s : CategoryTheory.Limits.Cone F) {X Y : C} (f : X ⟢ Y) (g : Y ⟢ s.pt), (CategoryTheory.Limits.Cones.extendComp s f g).inv.hom = CategoryTheory.CategoryStruct.id X
_private.Mathlib.Probability.Martingale.Upcrossing.0.MeasureTheory.upcrossingStrat_le_one._simp_1_2
Mathlib.Probability.Martingale.Upcrossing
βˆ€ {Ξ± : Type v} [inst : LinearOrder Ξ±] {a₁ aβ‚‚ b₁ bβ‚‚ : Ξ±}, Disjoint (Set.Ico a₁ aβ‚‚) (Set.Ico b₁ bβ‚‚) = (min aβ‚‚ bβ‚‚ ≀ max a₁ b₁)
AlgHom.toEnd._proof_1
Mathlib.Algebra.Algebra.Hom
βˆ€ {R : Type u_2} {A : Type u_1} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Algebra R A], AlgHom.toLinearMap 1 = AlgHom.toLinearMap 1
Lean.NameHashSet.insert
Lean.Data.NameMap.Basic
Lean.NameHashSet β†’ Lean.Name β†’ Std.HashSet Lean.Name
BooleanSubalgebra
Mathlib.Order.BooleanSubalgebra
(Ξ± : Type u_2) β†’ [BooleanAlgebra Ξ±] β†’ Type u_2
LocallyConstant.instNonUnitalCommSemiring
Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} β†’ {Y : Type u_2} β†’ [inst : TopologicalSpace X] β†’ [NonUnitalCommSemiring Y] β†’ NonUnitalCommSemiring (LocallyConstant X Y)
Lean.Meta.Monotonicity.defaultFailK
Lean.Elab.Tactic.Monotonicity
{Ξ± : Type} β†’ Lean.Expr β†’ Array Lean.Name β†’ Lean.MetaM Ξ±
MeasurableSpace.sUnion_countablePartition
Mathlib.MeasureTheory.MeasurableSpace.CountablyGenerated
βˆ€ (Ξ± : Type u_3) [inst : MeasurableSpace Ξ±] [inst_1 : MeasurableSpace.CountablyGenerated Ξ±] (n : β„•), ⋃₀ MeasurableSpace.countablePartition Ξ± n = Set.univ
ChartedSpaceCore.noConfusionType
Mathlib.Geometry.Manifold.ChartedSpace
Sort u β†’ {H : Type u_5} β†’ [inst : TopologicalSpace H] β†’ {M : Type u_6} β†’ ChartedSpaceCore H M β†’ {H' : Type u_5} β†’ [inst' : TopologicalSpace H'] β†’ {M' : Type u_6} β†’ ChartedSpaceCore H' M' β†’ Sort u
Submodule.lTensorOne'.eq_1
Mathlib.LinearAlgebra.TensorProduct.Submodule
βˆ€ {R : Type u} {S : Type v} [inst : CommSemiring R] [inst_1 : Semiring S] [inst_2 : Algebra R S] (N : Submodule R S), N.lTensorOne' = ↑(LinearEquiv.ofEq (LinearMap.range ((Subalgebra.toSubmodule βŠ₯).mulMap N)) N β‹―) βˆ˜β‚— ((Subalgebra.toSubmodule βŠ₯).mulMap N).rangeRestrict
_private.Mathlib.NumberTheory.JacobiSum.Basic.0.jacobiSum_nontrivial_inv._simp_1_11
Mathlib.NumberTheory.JacobiSum.Basic
βˆ€ {R : Type u_1} [inst : AddMonoidWithOne R] [CharZero R] (n : β„•), (↑n + 1 = 0) = False
Lean.StructureFieldInfo.noConfusionType
Lean.Structure
Sort u β†’ Lean.StructureFieldInfo β†’ Lean.StructureFieldInfo β†’ Sort u
UInt64.mul_assoc
Init.Data.UInt.Lemmas
βˆ€ (a b c : UInt64), a * b * c = a * (b * c)
Batteries.Tactic.TransRelation._sizeOf_1
Batteries.Tactic.Trans
Batteries.Tactic.TransRelation β†’ β„•
EuclideanGeometry.Sphere.secondInter_mem._simp_1
Mathlib.Geometry.Euclidean.Sphere.SecondInter
βˆ€ {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MetricSpace P] [inst_3 : NormedAddTorsor V P] {s : EuclideanGeometry.Sphere P} {p : P} (v : V), (s.secondInter p v ∈ s) = (p ∈ s)
Std.DHashMap.Raw.Const.get!_filter_of_getKey?_eq_some
Std.Data.DHashMap.RawLemmas
βˆ€ {Ξ± : Type u} [inst : BEq Ξ±] [inst_1 : Hashable Ξ±] {Ξ² : Type v} {m : Std.DHashMap.Raw Ξ± fun x => Ξ²} [EquivBEq Ξ±] [LawfulHashable Ξ±] [inst_4 : Inhabited Ξ²] {f : Ξ± β†’ Ξ² β†’ Bool} {k k' : Ξ±}, m.WF β†’ m.getKey? k = some k' β†’ Std.DHashMap.Raw.Const.get! (Std.DHashMap.Raw.filter f m) k = (Option.filter (fun x => f k' x) (Std.DHashMap.Raw.Const.get? m k)).get!
_private.Lean.Meta.InferType.0.Lean.Meta.isArrowProposition'.match_1
Lean.Meta.InferType
(motive : Lean.Expr β†’ β„• β†’ Sort u_1) β†’ (x : Lean.Expr) β†’ (x_1 : β„•) β†’ ((binderName : Lean.Name) β†’ (t b : Lean.Expr) β†’ (binderInfo : Lean.BinderInfo) β†’ (n : β„•) β†’ motive (Lean.Expr.forallE binderName t b binderInfo) n.succ) β†’ ((declName : Lean.Name) β†’ (t value b : Lean.Expr) β†’ (nondep : Bool) β†’ (n : β„•) β†’ motive (Lean.Expr.letE declName t value b nondep) n) β†’ ((data : Lean.MData) β†’ (e : Lean.Expr) β†’ (n : β„•) β†’ motive (Lean.Expr.mdata data e) n) β†’ ((idx : β„•) β†’ motive (Lean.Expr.bvar idx) 0) β†’ ((type : Lean.Expr) β†’ motive type 0) β†’ ((x : Lean.Expr) β†’ (x_2 : β„•) β†’ motive x x_2) β†’ motive x x_1
PowerBasis.mk.injEq
Mathlib.RingTheory.PowerBasis
βˆ€ {R : Type u_7} {S : Type u_8} [inst : CommRing R] [inst_1 : Ring S] [inst_2 : Algebra R S] (gen : S) (dim : β„•) (basis : Module.Basis (Fin dim) R S) (basis_eq_pow : βˆ€ (i : Fin dim), basis i = gen ^ ↑i) (gen_1 : S) (dim_1 : β„•) (basis_1 : Module.Basis (Fin dim_1) R S) (basis_eq_pow_1 : βˆ€ (i : Fin dim_1), basis_1 i = gen_1 ^ ↑i), ({ gen := gen, dim := dim, basis := basis, basis_eq_pow := basis_eq_pow } = { gen := gen_1, dim := dim_1, basis := basis_1, basis_eq_pow := basis_eq_pow_1 }) = (gen = gen_1 ∧ dim = dim_1 ∧ basis ≍ basis_1)
_private.Mathlib.ModelTheory.Basic.0.FirstOrder.Language.isEmpty_empty._simp_1
Mathlib.ModelTheory.Basic
βˆ€ {Ξ± : Type u_4} {Ξ² : Type u_5}, IsEmpty (Ξ± βŠ• Ξ²) = (IsEmpty Ξ± ∧ IsEmpty Ξ²)
_private.Mathlib.ModelTheory.Complexity.0.FirstOrder.Language.BoundedFormula.realize_toPrenexImp._simp_1_2
Mathlib.ModelTheory.Complexity
βˆ€ {L : FirstOrder.Language} {M : Type w} [inst : L.Structure M] {Ξ± : Type u'} {l : β„•} {Ο† ψ : L.BoundedFormula Ξ± l} {v : Ξ± β†’ M} {xs : Fin l β†’ M}, (Ο†.imp ψ).Realize v xs = (Ο†.Realize v xs β†’ ψ.Realize v xs)
sdiff_sdiff_le
Mathlib.Order.Heyting.Basic
βˆ€ {Ξ± : Type u_2} [inst : GeneralizedCoheytingAlgebra Ξ±] {a b : Ξ±}, a \ (a \ b) ≀ b
Lean.PrettyPrinter.Formatter.categoryFormatter
Lean.PrettyPrinter.Formatter
Lean.Name β†’ Lean.PrettyPrinter.Formatter
_private.Init.Data.Array.Basic.0.Array.takeWhile.go._unary._proof_1
Init.Data.Array.Basic
βˆ€ {Ξ± : Type u_1} (as : Array Ξ±) (i : β„•) (acc : Array Ξ±) (h : i < as.size), InvImage (fun x1 x2 => x1 < x2) (fun x => PSigma.casesOn x fun i acc => as.size - i) ⟨i + 1, acc.push as[i]⟩ ⟨i, acc⟩
Std.Time.Modifier.F
Std.Time.Format.Basic
Std.Time.Number β†’ Std.Time.Modifier
StateRefT'.run
Init.Control.StateRef
{Ο‰ Οƒ : Type} β†’ {m : Type β†’ Type} β†’ [Monad m] β†’ [MonadLiftT (ST Ο‰) m] β†’ {Ξ± : Type} β†’ StateRefT' Ο‰ Οƒ m Ξ± β†’ Οƒ β†’ m (Ξ± Γ— Οƒ)
IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers
Mathlib.RingTheory.DedekindDomain.AdicValuation
{R : Type u_1} β†’ [inst : CommRing R] β†’ [inst_1 : IsDedekindDomain R] β†’ (K : Type u_2) β†’ [inst_2 : Field K] β†’ [inst_3 : Algebra R K] β†’ [inst_4 : IsFractionRing R K] β†’ (v : IsDedekindDomain.HeightOneSpectrum R) β†’ ValuationSubring (IsDedekindDomain.HeightOneSpectrum.adicCompletion K v)
LinearOrderedAddCommGroup.negGen_eq_of_top
Mathlib.Algebra.Order.Group.Cyclic
βˆ€ (G : Type u_1) [inst : AddCommGroup G] [inst_1 : LinearOrder G] [inst_2 : IsOrderedAddMonoid G] [inst_3 : Nontrivial G] [inst_4 : IsAddCyclic G], LinearOrderedAddCommGroup.negGen G = LinearOrderedAddCommGroup.Subgroup.negGen ⊀
IsCompl.sup_eq_top
Mathlib.Order.Disjoint
βˆ€ {Ξ± : Type u_1} [inst : Lattice Ξ±] [inst_1 : BoundedOrder Ξ±] {x y : Ξ±}, IsCompl x y β†’ x βŠ” y = ⊀
ENNReal.one_le_coe_iff._simp_1
Mathlib.Data.ENNReal.Basic
βˆ€ {r : NNReal}, (1 ≀ ↑r) = (1 ≀ r)
MeasureTheory.crossing_eq_crossing_of_lowerCrossingTime_lt
Mathlib.Probability.Martingale.Upcrossing
βˆ€ {Ξ© : Type u_1} {a b : ℝ} {f : β„• β†’ Ξ© β†’ ℝ} {N n : β„•} {Ο‰ : Ξ©} {M : β„•}, N ≀ M β†’ MeasureTheory.lowerCrossingTime a b f N n Ο‰ < N β†’ MeasureTheory.upperCrossingTime a b f M n Ο‰ = MeasureTheory.upperCrossingTime a b f N n Ο‰ ∧ MeasureTheory.lowerCrossingTime a b f M n Ο‰ = MeasureTheory.lowerCrossingTime a b f N n Ο‰
AlgCat.instBraidedModuleCatForgetβ‚‚
Mathlib.Algebra.Category.AlgCat.Symmetric
{R : Type u} β†’ [inst : CommRing R] β†’ (CategoryTheory.forgetβ‚‚ (AlgCat R) (ModuleCat R)).Braided
Std.Time.instHSubOffsetOffset_41
Std.Time.Date.Basic
HSub Std.Time.Week.Offset Std.Time.Day.Offset Std.Time.Day.Offset
CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse._proof_6
Mathlib.CategoryTheory.Localization.Construction
βˆ€ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] (W : CategoryTheory.MorphismProperty C) (D : Type u_4) [inst_1 : CategoryTheory.Category.{u_3, u_4} D] (G : W.FunctorsInverting D), CategoryTheory.Localization.Construction.natTransExtension (CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom β‹―) (CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id G) (CategoryTheory.eqToHom β‹―))) = CategoryTheory.CategoryStruct.id (CategoryTheory.Localization.Construction.lift G.obj β‹―)
Filter.HasBasis.forall_iff
Mathlib.Order.Filter.Bases.Basic
βˆ€ {Ξ± : Type u_1} {ΞΉ : Sort u_4} {l : Filter Ξ±} {p : ΞΉ β†’ Prop} {s : ΞΉ β†’ Set Ξ±}, l.HasBasis p s β†’ βˆ€ {P : Set Ξ± β†’ Prop}, (βˆ€ ⦃s t : Set α⦄, s βŠ† t β†’ P s β†’ P t) β†’ ((βˆ€ s ∈ l, P s) ↔ βˆ€ (i : ΞΉ), p i β†’ P (s i))
String.Pos.noConfusionType
Init.Data.String.Defs
Sort u β†’ {s : String} β†’ s.Pos β†’ {s' : String} β†’ s'.Pos β†’ Sort u
AddGroup.ofLeftAxioms._proof_3
Mathlib.Algebra.Group.MinimalAxioms
βˆ€ {G : Type u_1} [inst : Add G] [inst_1 : Zero G] (assoc : βˆ€ (a b c : G), a + b + c = a + (b + c)) (n : β„•) (x : G), nsmulRecAuto (n + 1) x = nsmulRecAuto (n + 1) x
UniformSpaceCat.instReflectiveCpltSepUniformSpaceForgetβ‚‚._proof_1
Mathlib.Topology.Category.UniformSpace
(CategoryTheory.forgetβ‚‚ CpltSepUniformSpace UniformSpaceCat).Full
covariant_le_of_covariant_lt
Mathlib.Algebra.Order.Monoid.Unbundled.Defs
βˆ€ (M : Type u_1) (N : Type u_2) (ΞΌ : M β†’ N β†’ N) [inst : PartialOrder N], (Covariant M N ΞΌ fun x1 x2 => x1 < x2) β†’ Covariant M N ΞΌ fun x1 x2 => x1 ≀ x2
CategoryTheory.Functor.LaxBraided.mk
Mathlib.CategoryTheory.Monoidal.Braided.Basic
{C : Type u₁} β†’ [inst : CategoryTheory.Category.{v₁, u₁} C] β†’ [inst_1 : CategoryTheory.MonoidalCategory C] β†’ [inst_2 : CategoryTheory.BraidedCategory C] β†’ {D : Type uβ‚‚} β†’ [inst_3 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] β†’ [inst_4 : CategoryTheory.MonoidalCategory D] β†’ [inst_5 : CategoryTheory.BraidedCategory D] β†’ {F : CategoryTheory.Functor C D} β†’ [toLaxMonoidal : F.LaxMonoidal] β†’ autoParam (βˆ€ (X Y : C), CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.LaxMonoidal.ΞΌ F X Y) (F.map (Ξ²_ X Y).hom) = CategoryTheory.CategoryStruct.comp (Ξ²_ (F.obj X) (F.obj Y)).hom (CategoryTheory.Functor.LaxMonoidal.ΞΌ F Y X)) CategoryTheory.Functor.LaxBraided.braided._autoParam β†’ F.LaxBraided
Finite.of_addSubgroup_quotient
Mathlib.GroupTheory.QuotientGroup.Finite
βˆ€ {G : Type u_2} [inst : AddGroup G] (H : AddSubgroup G) [Finite β†₯H] [Finite (G β§Έ H)], Finite G
Lean.Elab.Term.Context.declName?
Lean.Elab.Term.TermElabM
Lean.Elab.Term.Context β†’ Option Lean.Name
_private.Mathlib.NumberTheory.LSeries.PrimesInAP.0.ArithmeticFunction.vonMangoldt.summable_residueClass_non_primes_div._simp_1_2
Mathlib.NumberTheory.LSeries.PrimesInAP
βˆ€ {Gβ‚€ : Type u_3} [inst : GroupWithZero Gβ‚€] {a b : Gβ‚€}, (a / b = 0) = (a = 0 ∨ b = 0)
AddSubsemigroup.centerCongr_apply_coe
Mathlib.GroupTheory.Submonoid.Center
βˆ€ {M : Type u_2} {N : Type u_1} [inst : Add M] [inst_1 : Add N] (e : M ≃+ N) (r : β†₯(AddSubsemigroup.center M)), ↑((AddSubsemigroup.centerCongr e) r) = e ↑r
Matrix.ofNat_mulVec
Mathlib.Data.Matrix.Mul
βˆ€ {m : Type u_2} {Ξ± : Type v} [inst : NonAssocSemiring Ξ±] [inst_1 : Fintype m] [inst_2 : DecidableEq m] (x : β„•) [inst_3 : x.AtLeastTwo] (v : m β†’ Ξ±), (OfNat.ofNat x).mulVec v = OfNat.ofNat x β€’ v
SchwartzMap.fderivCLM._proof_5
Mathlib.Analysis.Distribution.SchwartzSpace
βˆ€ (π•œ : Type u_1) {F : Type u_2} [inst : NormedAddCommGroup F] [inst_1 : RCLike π•œ] [inst_2 : NormedSpace π•œ F], ContinuousConstSMul π•œ F
Std.Iterators.IterM.toList_empty
Std.Data.Iterators.Lemmas.Producers.Monadic.Empty
βˆ€ {m : Type u_1 β†’ Type u_2} {Ξ² : Type u_1} [inst : Monad m] [LawfulMonad m], (Std.Iterators.IterM.empty m Ξ²).toList = pure []
CategoryTheory.Bicategory.eqToHomTransIso._proof_1
Mathlib.CategoryTheory.Bicategory.EqToHom
βˆ€ {B : Type u_1} {x y : B}, x = y β†’ x = y
Semiring.toOppositeModule._proof_3
Mathlib.Algebra.Module.Opposite
βˆ€ {R : Type u_1} [inst : Semiring R] (x x_1 : Rᡐᡒᡖ) (x_2 : R), x_2 * (MulOpposite.unop x + MulOpposite.unop x_1) = x_2 * MulOpposite.unop x + x_2 * MulOpposite.unop x_1
StarSubalgebra.one_mem_toNonUnitalStarSubalgebra
Mathlib.Algebra.Star.Subalgebra
βˆ€ {R : Type u_2} {A : Type u_3} [inst : CommSemiring R] [inst_1 : StarRing R] [inst_2 : Semiring A] [inst_3 : StarRing A] [inst_4 : Algebra R A] [inst_5 : StarModule R A] (S : StarSubalgebra R A), 1 ∈ S.toNonUnitalStarSubalgebra
Primrec.ite
Mathlib.Computability.Primrec
βˆ€ {Ξ± : Type u_1} {Οƒ : Type u_3} [inst : Primcodable Ξ±] [inst_1 : Primcodable Οƒ] {c : Ξ± β†’ Prop} [inst_2 : DecidablePred c] {f g : Ξ± β†’ Οƒ}, PrimrecPred c β†’ Primrec f β†’ Primrec g β†’ Primrec fun a => if c a then f a else g a
GroupTopology.instCompleteLattice._proof_1
Mathlib.Topology.Algebra.Group.GroupTopology
βˆ€ {Ξ± : Type u_1} [inst : Group Ξ±] (a b : GroupTopology Ξ±), a ≀ SemilatticeSup.sup a b
LieSubmodule.subsingleton_iff
Mathlib.Algebra.Lie.Submodule
βˆ€ (R : Type u) (L : Type v) (M : Type w) [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : AddCommGroup M] [inst_3 : Module R M] [inst_4 : LieRingModule L M], Subsingleton (LieSubmodule R L M) ↔ Subsingleton M
Odd.exists_bit1
Mathlib.Algebra.Ring.Parity
βˆ€ {Ξ± : Type u_2} [inst : Semiring Ξ±] {a : Ξ±}, Odd a β†’ βˆƒ b, a = 2 * b + 1
Int32.toUInt32_le
Init.Data.SInt.Lemmas
βˆ€ {a b : Int32}, 0 ≀ a β†’ a ≀ b β†’ a.toUInt32 ≀ b.toUInt32
Int16.or_neg_one
Init.Data.SInt.Bitwise
βˆ€ {a : Int16}, a ||| -1 = -1
HomologicalComplexβ‚‚.shape_f
Mathlib.Algebra.Homology.HomologicalBicomplex
βˆ€ {C : Type u_1} [inst : CategoryTheory.Category.{v_1, u_1} C] [inst_1 : CategoryTheory.Limits.HasZeroMorphisms C] {I₁ : Type u_2} {Iβ‚‚ : Type u_3} {c₁ : ComplexShape I₁} {cβ‚‚ : ComplexShape Iβ‚‚} (K : HomologicalComplexβ‚‚ C c₁ cβ‚‚) (i₁ i₁' : I₁), Β¬c₁.Rel i₁ i₁' β†’ βˆ€ (iβ‚‚ : Iβ‚‚), (K.d i₁ i₁').f iβ‚‚ = 0
Cardinal.mul_eq_max_of_aleph0_le_right
Mathlib.SetTheory.Cardinal.Arithmetic
βˆ€ {a b : Cardinal.{u_1}}, a β‰  0 β†’ Cardinal.aleph0 ≀ b β†’ a * b = max a b
Prod.addAction._proof_2
Mathlib.Algebra.Group.Action.Prod
βˆ€ {M : Type u_3} {Ξ± : Type u_1} {Ξ² : Type u_2} [inst : AddMonoid M] [inst_1 : AddAction M Ξ±] [inst_2 : AddAction M Ξ²] (x : Ξ± Γ— Ξ²), 0 +α΅₯ x = x
HasSubset.casesOn
Init.Core
{Ξ± : Type u} β†’ {motive : HasSubset Ξ± β†’ Sort u_1} β†’ (t : HasSubset Ξ±) β†’ ((Subset : Ξ± β†’ Ξ± β†’ Prop) β†’ motive { Subset := Subset }) β†’ motive t
Std.DTreeMap.Β«term_~m_Β»
Std.Data.DTreeMap.Basic
Lean.TrailingParserDescr
Lean.Compiler.LCNF.CSE.instMonadFVarSubstStateM
Lean.Compiler.LCNF.CSE
Lean.Compiler.LCNF.MonadFVarSubstState Lean.Compiler.LCNF.CSE.M
SmoothBumpCovering.noConfusionType
Mathlib.Geometry.Manifold.PartitionOfUnity
Sort u β†’ {ΞΉ : Type uΞΉ} β†’ {E : Type uE} β†’ [inst : NormedAddCommGroup E] β†’ [inst_1 : NormedSpace ℝ E] β†’ {H : Type uH} β†’ [inst_2 : TopologicalSpace H] β†’ {I : ModelWithCorners ℝ E H} β†’ {M : Type uM} β†’ [inst_3 : TopologicalSpace M] β†’ [inst_4 : ChartedSpace H M] β†’ [inst_5 : FiniteDimensional ℝ E] β†’ {s : Set M} β†’ SmoothBumpCovering ΞΉ I M s β†’ {ΞΉ' : Type uΞΉ} β†’ {E' : Type uE} β†’ [inst' : NormedAddCommGroup E'] β†’ [inst'_1 : NormedSpace ℝ E'] β†’ {H' : Type uH} β†’ [inst'_2 : TopologicalSpace H'] β†’ {I' : ModelWithCorners ℝ E' H'} β†’ {M' : Type uM} β†’ [inst'_3 : TopologicalSpace M'] β†’ [inst'_4 : ChartedSpace H' M'] β†’ [inst'_5 : FiniteDimensional ℝ E'] β†’ {s' : Set M'} β†’ SmoothBumpCovering ΞΉ' I' M' s' β†’ Sort u
Filter.lift_iInf_of_directed
Mathlib.Order.Filter.Lift
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {ΞΉ : Sort u_4} [Nonempty ΞΉ] {f : ΞΉ β†’ Filter Ξ±} {g : Set Ξ± β†’ Filter Ξ²}, Directed (fun x1 x2 => x1 β‰₯ x2) f β†’ Monotone g β†’ (iInf f).lift g = β¨… i, (f i).lift g
ZFSet.choice_mem
Mathlib.SetTheory.ZFC.Class
βˆ€ (x : ZFSet.{u}), βˆ… βˆ‰ x β†’ βˆ€ y ∈ x, ↑x.choice β€² ↑y ∈ ↑y
IsSquare.exists_sq
Mathlib.Algebra.Group.Even
βˆ€ {Ξ± : Type u_2} [inst : Monoid Ξ±] (a : Ξ±), IsSquare a β†’ βˆƒ r, a = r ^ 2
Aesop.Frontend.BuilderOption.index.noConfusion
Aesop.Frontend.RuleExpr
{P : Sort u} β†’ {imode imode' : Aesop.IndexingMode} β†’ Aesop.Frontend.BuilderOption.index imode = Aesop.Frontend.BuilderOption.index imode' β†’ (imode = imode' β†’ P) β†’ P
CategoryTheory.Equivalence.cancel_counitInv_right._simp_1
Mathlib.CategoryTheory.Equivalence
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type uβ‚‚} [inst_1 : CategoryTheory.Category.{vβ‚‚, uβ‚‚} D] (e : C β‰Œ D) {X Y : D} (f f' : X ⟢ Y), (CategoryTheory.CategoryStruct.comp f (e.counitInv.app Y) = CategoryTheory.CategoryStruct.comp f' (e.counitInv.app Y)) = (f = f')
MvPolynomial.mem_supported_vars
Mathlib.Algebra.MvPolynomial.Supported
βˆ€ {Οƒ : Type u_1} {R : Type u} [inst : CommSemiring R] (p : MvPolynomial Οƒ R), p ∈ MvPolynomial.supported R ↑p.vars
self_mem_nhdsWithin
Mathlib.Topology.NhdsWithin
βˆ€ {Ξ± : Type u_1} [inst : TopologicalSpace Ξ±] {a : Ξ±} {s : Set Ξ±}, s ∈ nhdsWithin a s
_private.Lean.Elab.BuiltinNotation.0.Lean.Elab.Term.elabRunElab.unsafe_impl_5
Lean.Elab.BuiltinNotation
Lean.TSyntax `term β†’ Lean.Elab.TermElabM (Option Lean.Expr β†’ Lean.Elab.TermElabM Lean.Expr)
Nonneg.unitsHomeomorphPos._proof_1
Mathlib.Topology.Algebra.Field
βˆ€ (R : Type u_1) [inst : DivisionSemiring R] [inst_1 : PartialOrder R] [inst_2 : IsStrictOrderedRing R] [inst_3 : PosMulReflectLT R] [inst_4 : TopologicalSpace R], Continuous (Nonneg.unitsEquivPos R).toFun
IsSl2Triple.HasPrimitiveVectorWith.casesOn
Mathlib.Algebra.Lie.Sl2
{R : Type u_1} β†’ {L : Type u_2} β†’ {M : Type u_3} β†’ [inst : CommRing R] β†’ [inst_1 : LieRing L] β†’ [inst_2 : AddCommGroup M] β†’ [inst_3 : Module R M] β†’ [inst_4 : LieRingModule L M] β†’ {h e f : L} β†’ {t : IsSl2Triple h e f} β†’ {m : M} β†’ {ΞΌ : R} β†’ {motive : t.HasPrimitiveVectorWith m ΞΌ β†’ Sort u} β†’ (t_1 : t.HasPrimitiveVectorWith m ΞΌ) β†’ ((ne_zero : m β‰  0) β†’ (lie_h : ⁅h, m⁆ = ΞΌ β€’ m) β†’ (lie_e : ⁅e, m⁆ = 0) β†’ motive β‹―) β†’ motive t_1
SimpleGraph.Copy.isoSubgraphMap._simp_1
Mathlib.Combinatorics.SimpleGraph.Copy
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {Ξ³ : Type u_3} {Ξ΄ : Type u_4} {r : Ξ± β†’ Ξ² β†’ Prop} {f : Ξ± β†’ Ξ³} {g : Ξ² β†’ Ξ΄} {c : Ξ³} {d : Ξ΄}, Relation.Map r f g c d = βˆƒ a b, r a b ∧ f a = c ∧ g b = d
Aesop.Rapp.setState
Aesop.Tree.Data
Aesop.NodeState β†’ Aesop.Rapp β†’ Aesop.Rapp
Subrepresentation.instMax
Mathlib.RepresentationTheory.Subrepresentation
{A : Type u_1} β†’ [inst : CommRing A] β†’ {G : Type u_2} β†’ [inst_1 : Group G] β†’ {W : Type u_3} β†’ [inst_2 : AddCommMonoid W] β†’ [inst_3 : Module A W] β†’ {ρ : Representation A G W} β†’ Max (Subrepresentation ρ)
List.find?_pmap.match_1
Init.Data.List.Find
{Ξ± : Type u_1} β†’ {xs : List Ξ±} β†’ (motive : { x // x ∈ xs } β†’ Sort u_2) β†’ (x : { x // x ∈ xs }) β†’ ((a : Ξ±) β†’ (m : a ∈ xs) β†’ motive ⟨a, m⟩) β†’ motive x
TwoSidedIdeal.jacobson
Mathlib.RingTheory.Jacobson.Ideal
{R : Type u} β†’ [inst : Ring R] β†’ TwoSidedIdeal R β†’ TwoSidedIdeal R
_private.Lean.Compiler.LCNF.ToLCNF.0.Lean.Compiler.LCNF.ToLCNF.toLCNF.visitCore.match_3
Lean.Compiler.LCNF.ToLCNF
(motive : Lean.Expr β†’ Sort u_1) β†’ (e : Lean.Expr) β†’ ((fn arg : Lean.Expr) β†’ motive (fn.app arg)) β†’ ((declName : Lean.Name) β†’ (us : List Lean.Level) β†’ motive (Lean.Expr.const declName us)) β†’ ((s : Lean.Name) β†’ (i : β„•) β†’ (e : Lean.Expr) β†’ motive (Lean.Expr.proj s i e)) β†’ ((d : Lean.MData) β†’ (e : Lean.Expr) β†’ motive (Lean.Expr.mdata d e)) β†’ ((binderName : Lean.Name) β†’ (binderType body : Lean.Expr) β†’ (binderInfo : Lean.BinderInfo) β†’ motive (Lean.Expr.lam binderName binderType body binderInfo)) β†’ ((declName : Lean.Name) β†’ (type value body : Lean.Expr) β†’ (nondep : Bool) β†’ motive (Lean.Expr.letE declName type value body nondep)) β†’ ((lit : Lean.Literal) β†’ motive (Lean.Expr.lit lit)) β†’ ((fvarId : Lean.FVarId) β†’ motive (Lean.Expr.fvar fvarId)) β†’ ((binderName : Lean.Name) β†’ (binderType body : Lean.Expr) β†’ (binderInfo : Lean.BinderInfo) β†’ motive (Lean.Expr.forallE binderName binderType body binderInfo)) β†’ ((mvarId : Lean.MVarId) β†’ motive (Lean.Expr.mvar mvarId)) β†’ ((deBruijnIndex : β„•) β†’ motive (Lean.Expr.bvar deBruijnIndex)) β†’ ((u : Lean.Level) β†’ motive (Lean.Expr.sort u)) β†’ motive e
_private.Mathlib.RingTheory.WittVector.MulCoeff.0.WittVector._aux_Mathlib_RingTheory_WittVector_MulCoeff___unexpand_WittVector_1
Mathlib.RingTheory.WittVector.MulCoeff
Lean.PrettyPrinter.Unexpander
SchwartzMap.instLineDeriv._proof_1
Mathlib.Analysis.Distribution.SchwartzSpace
βˆ€ (π•œ : Type u_1) [inst : RCLike π•œ], RingHomCompTriple (RingHom.id π•œ) (RingHom.id π•œ) (RingHom.id π•œ)
Lean.Meta.repeat1'
Lean.Meta.Tactic.Repeat
{m : Type β†’ Type} β†’ {Ξ΅ : Type u_1} β†’ {s : Type} β†’ [Monad m] β†’ [Lean.MonadError m] β†’ [MonadExcept Ξ΅ m] β†’ [Lean.MonadBacktrack s m] β†’ [Lean.MonadMCtx m] β†’ (Lean.MVarId β†’ m (List Lean.MVarId)) β†’ List Lean.MVarId β†’ optParam β„• 100000 β†’ m (List Lean.MVarId)
_private.Lean.Meta.Tactic.Grind.EMatchTheorem.0.Lean.Meta.Grind.Collector.Context.mk.injEq
Lean.Meta.Tactic.Grind.EMatchTheorem
βˆ€ (proof : Lean.Expr) (xs : Array Lean.Expr) (proof_1 : Lean.Expr) (xs_1 : Array Lean.Expr), ({ proof := proof, xs := xs } = { proof := proof_1, xs := xs_1 }) = (proof = proof_1 ∧ xs = xs_1)
Aesop.Script.SScript.empty
Aesop.Script.SScript
Aesop.Script.SScript
add_sub_assoc'
Mathlib.Algebra.Group.Basic
βˆ€ {G : Type u_3} [inst : SubNegMonoid G] (a b c : G), a + (b - c) = a + b - c
RatFunc.toFractionRingAlgEquiv
Mathlib.FieldTheory.RatFunc.Basic
(K : Type u) β†’ [inst : CommRing K] β†’ [inst_1 : IsDomain K] β†’ (R : Type u_1) β†’ [inst_2 : CommSemiring R] β†’ [inst_3 : Algebra R (Polynomial K)] β†’ RatFunc K ≃ₐ[R] FractionRing (Polynomial K)
Algebra.Extension.algebraMap_Οƒ
Mathlib.RingTheory.Extension.Basic
βˆ€ {R : Type u} {S : Type v} [inst : CommRing R] [inst_1 : CommRing S] [inst_2 : Algebra R S] (self : Algebra.Extension R S) (x : S), (algebraMap self.Ring S) (self.Οƒ x) = x
List.not_lt_minimum_of_mem
Mathlib.Data.List.MinMax
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] [inst_1 : DecidableLT Ξ±] {l : List Ξ±} {a m : Ξ±}, a ∈ l β†’ l.minimum = ↑m β†’ Β¬a < m
_private.Lean.Elab.Tactic.Grind.BuiltinTactic.0.Lean.Elab.Tactic.Grind.evalNestedTactic
Lean.Elab.Tactic.Grind.BuiltinTactic
Lean.Elab.Tactic.Grind.GrindTactic
_private.Init.Data.List.Nat.Basic.0.List.length_filterMap_lt_length_iff_exists._proof_1_5
Init.Data.List.Nat.Basic
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Ξ± β†’ Option Ξ²} (xs : List Ξ±), (List.filterMap f xs).length ≀ xs.length β†’ Β¬(List.filterMap f xs).length < xs.length + 1 β†’ False
Lean.Parser.Tactic.Conv.convLeft
Init.Conv
Lean.ParserDescr
Ideal.map_sup
Mathlib.RingTheory.Ideal.Maps
βˆ€ {R : Type u} {S : Type v} {F : Type u_1} [inst : Semiring R] [inst_1 : Semiring S] [inst_2 : FunLike F R S] (f : F) (I J : Ideal R) [RingHomClass F R S], Ideal.map f (I βŠ” J) = Ideal.map f I βŠ” Ideal.map f J
FirstOrder.Language.LHom.substructureReduct._proof_2
Mathlib.ModelTheory.Substructures
βˆ€ {L : FirstOrder.Language} {M : Type u_3} [inst : L.Structure M] {L' : FirstOrder.Language} [inst_1 : L'.Structure M] (Ο† : L β†’α΄Έ L') [inst_2 : Ο†.IsExpansionOn M] {x x_1 : L'.Substructure M}, { toFun := fun S => { carrier := ↑S, fun_mem := β‹― }, inj' := β‹― } x ≀ { toFun := fun S => { carrier := ↑S, fun_mem := β‹― }, inj' := β‹― } x_1 ↔ { toFun := fun S => { carrier := ↑S, fun_mem := β‹― }, inj' := β‹― } x ≀ { toFun := fun S => { carrier := ↑S, fun_mem := β‹― }, inj' := β‹― } x_1
AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.imageBasicOpen
Mathlib.Geometry.RingedSpace.LocallyRingedSpace.HasColimits
{X Y : AlgebraicGeometry.LocallyRingedSpace} β†’ (f g : X ⟢ Y) β†’ (U : TopologicalSpace.Opens ↑↑(CategoryTheory.Limits.coequalizer (AlgebraicGeometry.LocallyRingedSpace.Hom.toShHom f) (AlgebraicGeometry.LocallyRingedSpace.Hom.toShHom g)).toPresheafedSpace) β†’ ↑((CategoryTheory.Limits.coequalizer (AlgebraicGeometry.LocallyRingedSpace.Hom.toShHom f) (AlgebraicGeometry.LocallyRingedSpace.Hom.toShHom g)).presheaf.obj (Opposite.op U)) β†’ TopologicalSpace.Opens ↑Y.toTopCat
unitarySubgroupUnitsEquiv._proof_7
Mathlib.Algebra.Star.Unitary
βˆ€ {M : Type u_1} [inst : Monoid M] [inst_1 : StarMul M] (x : β†₯(unitarySubgroup MΛ£)), star { val := β†‘βŸ¨β†‘β†‘x, β‹―βŸ©, inv := star β†‘βŸ¨β†‘β†‘x, β‹―βŸ©, val_inv := β‹―, inv_val := β‹― } * { val := β†‘βŸ¨β†‘β†‘x, β‹―βŸ©, inv := star β†‘βŸ¨β†‘β†‘x, β‹―βŸ©, val_inv := β‹―, inv_val := β‹― } = 1 ∧ { val := β†‘βŸ¨β†‘β†‘x, β‹―βŸ©, inv := star β†‘βŸ¨β†‘β†‘x, β‹―βŸ©, val_inv := β‹―, inv_val := β‹― } * star { val := β†‘βŸ¨β†‘β†‘x, β‹―βŸ©, inv := star β†‘βŸ¨β†‘β†‘x, β‹―βŸ©, val_inv := β‹―, inv_val := β‹― } = 1
NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIntegerLattice
Mathlib.NumberTheory.NumberField.CanonicalEmbedding.Basic
βˆ€ (K : Type u_1) [inst : Field K] [inst_1 : NumberField K], IsZLattice ℝ (NumberField.mixedEmbedding.integerLattice K)
Std.TreeMap.min?_keys
Std.Data.TreeMap.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeMap Ξ± Ξ² cmp} [Std.TransCmp cmp] [inst : Min Ξ±] [inst_1 : LE Ξ±] [Std.LawfulOrderCmp cmp] [Std.LawfulOrderMin Ξ±] [Std.LawfulOrderLeftLeaningMin Ξ±] [Std.LawfulEqCmp cmp], t.keys.min? = t.minKey?
LocalizedModule.instRing._proof_2
Mathlib.Algebra.Module.LocalizedModule.Basic
βˆ€ {R : Type u_1} [inst : CommSemiring R] {A : Type u_2} [inst_1 : Ring A] [inst_2 : Algebra R A] {S : Submonoid R} (n : β„•), (Int.negSucc n).castDef = (Int.negSucc n).castDef
BialgCat.Hom.mk.sizeOf_spec
Mathlib.Algebra.Category.BialgCat.Basic
βˆ€ {R : Type u} [inst : CommRing R] {V W : BialgCat R} [inst_1 : SizeOf R] (toBialgHom' : V.carrier →ₐc[R] W.carrier), sizeOf { toBialgHom' := toBialgHom' } = 1 + sizeOf toBialgHom'
Mathlib.Meta.NormNum.Result'.isNat.injEq
Mathlib.Tactic.NormNum.Result
βˆ€ (inst lit proof inst_1 lit_1 proof_1 : Lean.Expr), (Mathlib.Meta.NormNum.Result'.isNat inst lit proof = Mathlib.Meta.NormNum.Result'.isNat inst_1 lit_1 proof_1) = (inst = inst_1 ∧ lit = lit_1 ∧ proof = proof_1)
_private.Mathlib.Analysis.Asymptotics.Defs.0.Asymptotics.IsBigO.fiberwise_right._simp_1_2
Mathlib.Analysis.Asymptotics.Defs
βˆ€ {Ξ± : Type u} {f : Filter Ξ±} {P : Ξ± β†’ Prop}, (βˆ€αΆ  (x : Ξ±) in f, P x) = ({x | P x} ∈ f)